A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

EMS: Efficient Monitoring System to Detect Non-Cooperative Nodes in IoT-Based Vehicular Delay Tolerant Networks (VDTNs). | LitMetric

Since several Internet of Things (IoT) applications have been widely deployed on unstable wireless networks, such as the Delay Tolerant Network (DTN), data communication efficiency in DTN remains a challenge for IoT applications. Vehicular Delay Tolerant Network (VDTN) has become one of DTN's potential applications, in which the network experiences connectivity interruption due to the lack of an end-to-end relay route. VDTNs focus on node cooperation to achieve this goal. As a result, it is essential to ensure that almost all network nodes adopt the protocol to preserve network performance. This is a challenging task since nodes may diverge from the basic protocol to optimize their effectiveness. This article presents an Efficient Monitoring System (EMS) to detect and respond to just selfish nodes to minimize their entire network and data communication efficacy. The scheme is based on a network-wide cooperative sharing of node reputation. It is also necessary to increase overall network efficiency by tracking selfish nodes. The NS-2 simulator is used to run this experimental setup. Simulation results indicate that the proposed scheme performs better in terms of probability of package delivery, package delivery delay, energy consumption, and amount of packet drops. For 80% selfish nodes in the network, the packet delivery of EMS is 37% and 31% better than SOS and IPS. Similarly, the average delivery delay of EMS is 22% and 18% lower than SOS and IPS when 80% selfish nodes are incorporated in the network.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824832PMC
http://dx.doi.org/10.3390/s23010099DOI Listing

Publication Analysis

Top Keywords

selfish nodes
16
delay tolerant
12
network
9
efficient monitoring
8
monitoring system
8
vehicular delay
8
iot applications
8
tolerant network
8
data communication
8
package delivery
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!