In the discipline of hand gesture and dynamic sign language recognition, deep learning approaches with high computational complexity and a wide range of parameters have been an extremely remarkable success. However, the implementation of sign language recognition applications for mobile phones with restricted storage and computing capacities is usually greatly constrained by those limited resources. In light of this situation, we suggest lightweight deep neural networks with advanced processing for real-time dynamic sign language recognition (DSLR). This paper presents a DSLR application to minimize the gap between hearing-impaired communities and regular society. The DSLR application was developed using two robust deep learning models, the GRU and the 1D CNN, combined with the MediaPipe framework. In this paper, the authors implement advanced processes to solve most of the DSLR problems, especially in real-time detection, e.g., differences in depth and location. The solution method consists of three main parts. First, the input dataset is preprocessed with our algorithm to standardize the number of frames. Then, the MediaPipe framework extracts hands and poses landmarks (features) to detect and locate them. Finally, the features of the models are passed after processing the unification of the depth and location of the body to recognize the DSL accurately. To accomplish this, the authors built a new American video-based sign dataset and named it DSL-46. DSL-46 contains 46 daily used signs that were presented with all the needed details and properties for recording the new dataset. The results of the experiments show that the presented solution method can recognize dynamic signs extremely fast and accurately, even in real-time detection. The DSLR reaches an accuracy of 98.8%, 99.84%, and 88.40% on the DSL-46, LSA64, and LIBRAS-BSL datasets, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823561 | PMC |
http://dx.doi.org/10.3390/s23010002 | DOI Listing |
Adv Sci (Weinh)
January 2025
DP Technology, Beijing, 100080, China.
Powder X-ray diffraction (PXRD) is a prevalent technique in materials characterization. While the analysis of PXRD often requires extensive human manual intervention, and most automated method only achieved at coarse-grained level. The more difficult and important task of fine-grained crystal structure prediction from PXRD remains unaddressed.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology.
View Article and Find Full Text PDFSci Rep
January 2025
North Carolina School of Science and Mathematics, Durham, NC, 27705, USA.
Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.
View Article and Find Full Text PDFNPJ Digit Med
January 2025
Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
Adaptive deep brain stimulation (DBS) provides individualized therapy for people with Parkinson's disease (PWP) by adjusting the stimulation in real-time using neural signals that reflect their motor state. Current algorithms, however, utilize condensed and manually selected neural features which may result in a less robust and biased therapy. In this study, we propose Neural-to-Gait Neural network (N2GNet), a novel deep learning-based regression model capable of tracking real-time gait performance from subthalamic nucleus local field potentials (STN LFPs).
View Article and Find Full Text PDFSci Rep
January 2025
College of Computer and Data Science, Minjiang University, Fuzhou, 350018, China.
This study presents a novel approach to identifying meters and their pointers in modern industrial scenarios using deep learning. We developed a neural network model that can detect gauges and one or more of their pointers on low-quality images. We use an encoder network, jump connections, and a modified Convolutional Block Attention Module (CBAM) to detect gauge panels and pointer keypoints in images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!