The power transformer is vital to the reliability of the power grid which is most commonly insulated with Kraft paper and immersed in mineral oil, among which the aged state of the paper is mainly correlated to the operating life of the transformer. Degree of polymerization (DP) is a direct parameter to assess the aged condition of insulating paper, but existing DP measurement by viscosity methods are destructive and complicated. In this paper, terahertz time-domain spectroscopy (THz-TDS) was introduced to reach rapid, non-destructive detection of the DP of insulating paper. The absorption spectra of insulating paper show that characteristic peak regions at 1.8 and 2.23 THz both exhibit a log-linear quantitative relationship with DP, and their universalities are confirmed by conducting the above relationship on different types of insulating paper. Fourier transform infrared spectroscopy (FTIR) analysis and molecular dynamics modeling further revealed that 1.8 and 2.23 THz were favorably associated with the growth of water-cellulose hydrogen bond strength and amorphous cellulose, respectively. This paper demonstrates the viability of applying THz-TDS to the non-destructive detection of DP in insulating paper and assigned the vibration modes of the characteristic absorption peaks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823725PMC
http://dx.doi.org/10.3390/polym15010247DOI Listing

Publication Analysis

Top Keywords

insulating paper
20
paper
10
cellulose paper
8
non-destructive detection
8
detection insulating
8
223 thz
8
insulating
5
quantitative measurements
4
measurements cellulose
4
paper based
4

Similar Publications

Recently, lithium-sulfur batteries have captivated those in the energy storage industry due to the low cost and high theoretical capacity of the sulfur cathode (1675 mA h g). However, to enhance the practical usability of Li-S batteries, it is crucial to address issues such as the insulating nature of sulfur cathodes and the high solubility of lithium polysulfides (LiPS, LiS , 4 ≤ ≤ 8) that cause poor active sulfur utilization. Designing innovative sulfur hosts can effectively overcome sulfur bottlenecks and achieve stable Li-sulfur batteries.

View Article and Find Full Text PDF

Passive Radiant Cooling and Heating are green and sustainable methods of radiant heat management without consuming additional energy. However, the absorption of sunlight and poor insulation of materials can reduce radiative cooling and also affect radiative heating performance. Herein, we have constructed porous hierarchical dual-mode silk nanofibrous aerogel (SNF) films with high mechanical toughness and stability using silk nanofibers/GO.

View Article and Find Full Text PDF

Domestic laundry wastewater is a major contributor to microfiber emissions in the aquatic environment. Among several mitigation measures, the use of external filters to capture microfibers from wastewater is one of the most efficient and commercially viable methods. This study attempted to develop an eco-friendly filtration medium to filter microfibers in laundry wastewater using luffa cylindrica fibers.

View Article and Find Full Text PDF

The range of sensor technologies for structural health monitoring (SHM) systems is expanding as the need for ongoing structural monitoring increases. In such a case, damage to the monitored structure elements is detected using an integrated network of sensors operating in real-time or periodically in frequent time stamps. This paper briefly introduces a new type of sensor, called a Customized Crack Propagation Sensor (CCPS), which is an alternative for crack gauges, but with enhanced functional features and customizability.

View Article and Find Full Text PDF

Flexible, wearable, piezoresistive sensors have significant potential for applications in wearable electronics and electronic skin fields due to their simple structure and durability. Highly sensitive, flexible, piezoresistive sensors with the ability to monitor laryngeal articulatory vibration supply a new, more comfortable and versatile way to aid communication for people with speech disorders. Here, we present a piezoresistive sensor with a novel microstructure that combines insulating and conductive properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!