Recent Development in the Processing, Properties, and Applications of Epoxy-Based Natural Fiber Polymer Biocomposites.

Polymers (Basel)

Department of Nondestructive Evaluation, Applied College, University of Hafr AlBatin, P.O. Box 1803, Hafr AlBatin 39524, Saudi Arabia.

Published: December 2022

Growing environmental concerns have increased the scientific interest in the utilization of natural fibers for the development of epoxy biocomposite materials. The incorporation of one or more fibers in the production of hybrid epoxy polymer composites has been a subject of discussion. It is interesting to acknowledge that natural/synthetic fiber hybridized epoxy composites have superior properties over natural/natural fiber hybridized epoxy composites. Significant efforts have been devoted to the improvement of natural fiber surface modifications to promote bonding with the epoxy matrix. However, to achieve sufficient surface modification without destroying the natural fibers, optimization of treatment parameters such as the concentration of the treatment solution and treatment time is highly necessary. Synthetic and treated natural fiber hybridization in an epoxy matrix is expected to produce biocomposites with appreciable biodegradability and superior mechanical properties by manipulating the fiber/matrix interfacial bonding. This paper presents a review of studies on the processing of epoxy natural fiber composites, mechanical properties, physical properties such as density and water absorption, thermal properties, biodegradability study, nondestructive examination, morphological characterizations, and applications of epoxy-based natural fiber biocomposites. Other aspects, including a review of variables that enhance the mechanical and functional performance of epoxy/natural fibers composites while also increasing the biodegradability of the composite material for environmental sustainability, were presented. The future research focus was elucidated. It is hoped that this review will stimulate and refocus research efforts toward advancing the manufacture of epoxy/natural fiber composites to meet the growing demand for biocomposite materials in the global world.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824855PMC
http://dx.doi.org/10.3390/polym15010145DOI Listing

Publication Analysis

Top Keywords

natural fiber
20
applications epoxy-based
8
epoxy-based natural
8
fiber
8
natural fibers
8
biocomposite materials
8
fiber hybridized
8
hybridized epoxy
8
epoxy composites
8
epoxy matrix
8

Similar Publications

Lignin reinforced eco-friendly and functional nanoarchitectonics materials with tailored interfacial barrier performance.

J Colloid Interface Sci

January 2025

State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China. Electronic address:

Exploring innovative and sustainable routes for the production of biodegradable biomass-based materials is critical to promote a circular carbon economy and carbon neutrality goals. Fossil-based non-biodegradable plastic waste poses a nonnegligible threat to humans and the ecological environment, and biomass-based functional materials are becoming increasingly viable alternatives. Lignin, a naturally occurring macromolecular polymer, is green and renewable resource rich in aromatic rings, with biodegradability, biocompatibility, and excellent processability for eco-friendly composites.

View Article and Find Full Text PDF

Measurement of biomechanical properties of transversely isotropic biological tissue using traveling wave expansion.

Med Image Anal

January 2025

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200040, China; National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai 200040, China; Department of Radiology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China. Electronic address:

The anisotropic mechanical properties of fiber-embedded biological tissues are essential for understanding their development, aging, disease progression, and response to therapy. However, accurate and fast assessment of mechanical anisotropy in vivo using elastography remains challenging. To address the dilemma of achieving both accuracy and efficiency in this inverse problem involving complex wave equations, we propose a computational framework that utilizes the traveling wave expansion model.

View Article and Find Full Text PDF

Objectives: Endoplasmic reticulum (ER) stress-induced protein homeostasis perturbation is a core pathological element in the pathogenesis of neurodegenerative diseases. This study aims to clarify the unique role played by C/EBP homologous protein (CHOP) as a biomarker of the unfolded protein response (UPR) in the etiology of chronic pain and related cognitive impairments following chronic constrictive nerve injury (CCI).

Methods: The memory capability following CCI was assessed utilizing the Morris water maze (MWM) and fear conditioning test (FCT).

View Article and Find Full Text PDF

Medusa's gaze: Cell traces and fibrils but no collagen in permineralized Jurassic ichthyosaur bone.

iScience

January 2025

Abteilung Paläontologie, Bonner Institut für Organismische Biologie, Universität Bonn, 53115 Bonn, Germany.

Bone is formed by specialized cells whose activity allows bone to grow, change shape, and repair itself. Its composite structure of collagen fibrils and bioapatite nanocrystals gives bone exceptional mechanical strength. Using scanning electron microscopy, we show in fossil ichthyosaurs, 150 to 200 million years old, from the Jurassic of France and the UK, abundant and direct evidence of cellular activity on the fossilized forming, resting, and resorbing surfaces of bone trabeculae, as well as bone fibrils, Sharpey fibers, and cartilage fibers.

View Article and Find Full Text PDF

Background: The growing demand for natural, health-promoting food products has led to increased interest in integrating nutrient-rich ingredients into everyday foods. The addition of leaves may increase nutrient profile, including essential amino acids, antioxidants, vitamins, and minerals in edible products.

Aim: The study aimed to optimize the addition of leaves in bread, noodles, and pasta and evaluate sensory attributes using a nine-point hedonic scale and nutritional analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!