A persistent purpose for self-powered and wearable electronic devices is the fabrication of graphene-PVDF piezoelectric nanogenerators with various co-solvents that could provide enhanced levels of durability and stability while generating a higher output. This study resulted in a piezoelectric nanogenerator based on a composite film composed of graphene, and poly (vinylidene fluoride) (PVDF) as a flexible polymer matrix that delivers high performance, flexibility, and cost-effectiveness. By adjusting the co-solvent in the solution, a graphene-PVDF piezoelectric nanogenerator can be created (acetone, THF, water, and EtOH). The solution becomes less viscous and is more diluted the more significant the concentration of co-solvents, such as acetone, THF, and EtOH. Additionally, when the density is low, the thickness will be thinner. The final film thickness for all is ~25 µm. Furthermore, the- crystal phase becomes more apparent when graphene is added and combined with the four co-solvents. Based on the XRD results, the peak changes to the right, which can be inferred to be more dominant with the β-phase. THF is the co-solvent with the highest piezoelectric output among other co-solvents. Most of the output voltages produced are 0.071 V and are more significant than the rest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824748PMC
http://dx.doi.org/10.3390/polym15010137DOI Listing

Publication Analysis

Top Keywords

composite film
8
graphene-pvdf piezoelectric
8
piezoelectric nanogenerator
8
acetone thf
8
piezoelectric
5
effects co-solvent-induced
4
co-solvent-induced self-assembled
4
self-assembled graphene-pvdf
4
graphene-pvdf composite
4
film piezoelectric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!