Transport processes across membranes play central roles in any biological system. They are essential for homeostasis, cell nutrition, and signaling. Fluxes across membranes are governed by fundamental thermodynamic rules and are influenced by electrical potentials and concentration gradients. Transmembrane transport processes have been largely studied on single membranes. However, several important cellular or subcellular structures consist of two closely spaced membranes that form a membrane sandwich. Such a dual membrane structure results in remarkable properties for the transport processes that are not present in isolated membranes. At the core of membrane sandwich properties, a small intermembrane volume is responsible for efficient coupling between the transport systems at the two otherwise independent membranes. Here, we present the physicochemical principles of transport coupling at two adjacent membranes and illustrate this concept with three examples. In the supplementary material, we provide animated PowerPoint presentations that visualize the relationships. They could be used for teaching purposes, as has already been completed successfully at the University of Talca.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824766 | PMC |
http://dx.doi.org/10.3390/plants12010204 | DOI Listing |
Environ Sci Process Impacts
December 2024
Anhui Bossco Environmental Protection Technology Co., Ltd, Ningguo, Anhui, 242301, China.
Contamination of heavy metals (HMs) has caused increasing concern due to their ecological toxicities and difficulties in degradation. The transport, retention, and release of HMs in porous media are highly related to their environmental fate and risk to groundwater. Column transport experiments and numerical simulations were conducted to investigate the retention and release behaviors of Cu, Pb, Cd, and Zn in the presence and absence of kaolin under varying ionic strengths and cation types.
View Article and Find Full Text PDFBioact Mater
February 2025
Medical School of Chinese PLA, Beijing, 100039, China.
Zn-based biodegradable metals (BMs) are regarded as revolutionary biomaterials for bone implants. However, their clinical application is limited by insufficient mechanical properties, delayed degradation, and overdose-induced Zn toxicity. Herein, innovative multi-material additive manufacturing (MMAM) is deployed to construct a Zn/titanium (Ti) hetero-structured composite.
View Article and Find Full Text PDFFront Physiol
December 2024
Department of Internal Medicine, Hypertension and Vascular Research Division, Henry ford hospital, Detroit, MI, United States.
Purpose Of Review: The thick ascending limb (TAL) of loop of Henle is essential for NaCl, calcium and magnesium homeostasis, pH balance and for urine concentration. NKCC2 is the main transporter for NaCl reabsorption in the TAL and its regulation is very complex. There have been recent advancements toward understanding how NKCC2 is regulated by protein trafficking, protein-protein interaction, and phosphorylation/dephosphorylation.
View Article and Find Full Text PDFFront Plant Sci
December 2024
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China.
Certain litchi varieties, such as "Nuomici", are highly susceptible to preharvest fruit drop, which leads to significant losses in fruit yield and economic value. However, the precise molecular mechanisms underlying this issue are not yet fully understood. In this study, we aimed to elucidate the signaling pathways that facilitate preharvest fruit drop in litchi, using "Nuomici" and "Huaizhi" cultivars as examples, which demonstrate high and low preharvest fruit drop rates, respectively.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Geology, University of Dhaka, Dhaka, 1000, Bangladesh.
Bhasan Char has undergone noteworthy transformations in its geographical characteristics since its emergence in 2003. Driven by sediment transported by the Ganges-Brahmaputra-Meghna river system, the island has gradually transitioned from a stretched-out configuration to a more rounded shape primarily due to continuous accretion, while erosion has been minimal since 2012. Currently, the island is being prepared to accommodate over 1 million Forcefully Displaced Myanmar Nationals (FDMN) refugees.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!