The selection of wheat varieties with high arabinoxylan (AX) levels could effectively improve the daily consumption of dietary fiber. However, studies on the selection of markers for AX levels are scarce. This study analyzed AX levels in 562 wheat genotypes collected from 46 countries using a GWAS with the BLINK model in the GAPIT3. Wheat genotypes were classified into eight subpopulations that exhibited high genetic differentiation based on 31,926 SNP loci. Eight candidate genes were identified, among which those encoding F-box domain-containing proteins, disease resistance protein RPM1, and bZIP transcription factor 29 highly correlated with AX levels. The AX level was higher in the adenine allele than in the guanine alleles of these genes in the wheat collection. In addition, the AX level was approximately 10% higher in 3 adenine combinations than 2 guanine, 1 adenine, and 3 guanine combinations in genotypes of three genes (F-box domain-containing proteins, RPM1, and bZIP transcription factor 29). The adenine allele, present in 97.46% of AX-95086356 SNP, exhibited a high correlation with AX levels following classification by country. Notably, the East Asian wheat genotypes contain high adenine alleles in three genes. These results highlight the potential of these three SNPs to serve as selectable markers for high AX content.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823421PMC
http://dx.doi.org/10.3390/plants12010184DOI Listing

Publication Analysis

Top Keywords

wheat genotypes
12
wheat collection
8
exhibited high
8
f-box domain-containing
8
domain-containing proteins
8
rpm1 bzip
8
bzip transcription
8
transcription factor
8
higher adenine
8
adenine allele
8

Similar Publications

The lesser grain borer, (F.) (Coleoptera: Bostrichidae) and khapra beetle, E. (Coleoptera: Dermestidae) are primary stored-grain insect pests.

View Article and Find Full Text PDF

Haplotype Analysis and Gene Pyramiding for Pre-Harvest Sprouting Resistance in White-Grain Wheat.

Int J Mol Sci

January 2025

Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture/Key Laboratory for Wheat Germplasm Resources and Genetic Improvement in Henan Province, Zhengzhou 450002, China.

The Huanghuai winter wheat region, China's primary wheat-producing area, predominantly cultivates white-grained wheat. Pre-harvest sprouting (PHS) significantly impacts yield and quality, making the breeding of PHS-resistant varieties crucial for ensuring China's wheat production security. This study evaluated the PHS rate of 344 white-grained wheat varieties over two consecutive growing seasons (2022/2023 and 2023/2024).

View Article and Find Full Text PDF

Background: Grain number (GN) is one of the key yield contributing factors in modern wheat (Triticum aestivum) varieties. Fruiting efficiency (FE) is a key trait for increasing GN by making more spike assimilates available to reproductive structures. Thousand grain weight (TGW) is also an important component of grain yield.

View Article and Find Full Text PDF

Climate change and recurrent droughts challenge wheat production and yield, necessitating careful selection and plant breeding research. "Value for Cultivation and Use" experiments are crucial for assessing genetic gains and providing information about potential pathways to alleviate production losses under specific environmental conditions. The goal of the study was to compare the grain yield and quality characteristics of 46 registered bread wheat cultivars in 5 out of 7 agro-ecological regions of Türkiye between 2016-2017 and 2017-2018.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!