Yttria-stabilized zirconia (YSZ) nanospheres were synthesized by calcination at 900 °C after the adsorption of Y ions into the pores of a zirconium-based metal-organic framework (MOF). The synthesized 3YSZ (zirconia doped with 3 mol% YO), 8YSZ (8 mol% YO), and 30YSZ (30 mol% YO) nanospheres were found to exhibit uniform sizes and shapes. Complex permittivity and complex permeability were carried out in K-band (i.e., 18-26.5 GHz) to determine their suitability for use as low-k materials in 5G communications. The real and imaginary parts of the permittivity of the sintered 3YSZ were determined to be 21.24 and 0.12, respectively, while those of 8YSZ were 22.80 and 0.16, and those of 30YSZ were 7.16 and 0.38. Control of the real part of the permittivity in the sintered YSZ was facilitated by modifying the YO content, thereby rendering this material an electronic ceramic with potential for use in high-frequency 5G communications due to its excellent mechanical properties, high chemical resistance, and good thermal stability. In particular, it could be employed as an exterior material for electronic communication products requiring the minimization of information loss.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824511 | PMC |
http://dx.doi.org/10.3390/nano13010028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!