A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Xanthohumol Interferes with the Activation of TGF-β Signaling in the Process Leading to Intestinal Fibrosis. | LitMetric

Xanthohumol Interferes with the Activation of TGF-β Signaling in the Process Leading to Intestinal Fibrosis.

Nutrients

College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Republic of Korea.

Published: December 2022

Fibrosis has various biological processes and affects almost every organ, especially in patients with inflammatory bowel disease, including Crohn's disease, who experience discomfort caused by intestinal fibrosis, which is a problem that needs to be resolved. TGF-β signaling is known to act as a key regulator of intestinal fibrosis, and its modulation could be an excellent candidate for fibrosis therapy. Xanthohumol (XN) has various effects, including anti-inflammation and anti-cancer; however, the detailed mechanism of TGF-β signaling has not yet been studied. The purpose of this study was to investigate the mechanism underlying the anti-fibrotic effect of XN on TGF-β1-induced intestinal fibrosis using primary human intestinal fibroblasts (HIFs). In this study, to check the anti-fibrotic effects of XN on intestinal fibrosis, we assessed the expression of fibrosis-related genes in TGF-β1-stimulated HIFs by qPCR, immunoblotting, and immunofluorescence staining. As a result, XN showed the ability to reduce the expression of fibrosis-associated genes increased by TGF-β1 treatment in HIFs and restored the cell shape altered by TGF-β1. In particular, XN repressed both NF-κB- and Smad-binding regions in the α-SMA promoter, which is important in fibrosis. In addition, XN inhibited NF-κB signaling, including phosphorylated-IkBα and cyclooxygenase-2 expression, and TNF-α-stimulated transcriptional activity of NF-κB. XN attenuated TGF-β1-induced phosphorylation of Smad2 and Smad3, and the transcriptional activity of CAGA. Particularly, XN interfered with the binding of TGF-Receptor I (TβRI) and Smad3 by binding to the kinase domain of the L45 loop of TβRI, thereby confirming that the fibrosis mechanism did not proceed further. In conclusion, XN has an inhibitory effect on TGF-β1-induced intestinal fibrosis in HIFs, significantly affecting TGF-β/Smad signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824381PMC
http://dx.doi.org/10.3390/nu15010099DOI Listing

Publication Analysis

Top Keywords

intestinal fibrosis
24
tgf-β signaling
12
fibrosis
10
tgf-β1-induced intestinal
8
transcriptional activity
8
intestinal
7
signaling
5
xanthohumol interferes
4
interferes activation
4
activation tgf-β
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!