Chiral 2-substituted chromanes are important substructures in organic synthesis and appear in numerous natural products. Herein, the correlation between specific optical rotations (SORs) and the stereochemistry at C2 of chiral 2-substituted chromanes was investigated through data mining, quantum-chemical calculations using density functional theory (DFT), and mechanistic analyses. For 2-aliphatic (including acyloxy and alkenyl) chromanes, the -helicity of the dihydropyran ring usually corresponds to a positive SOR; however, 2-aryl chromanes with -helicity tend to exhibit negative SORs. 2-Carboxyl (including alkoxycarbonyl and carbonyl) chromanes often display small experimental SORs, and theoretical calculations for them are prone to error because of the fluctuating conformational distribution with computational parameters. Several typical compounds were discussed, including detailed descriptions of the asymmetric synthesis, absolute configuration (AC) assignment methods, and systematic conformational analysis. We hope this work will enrich the knowledge of the stereochemistry of chiral 2-substituted chromanes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823451 | PMC |
http://dx.doi.org/10.3390/molecules28010439 | DOI Listing |
J Org Chem
January 2025
Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China.
We report a base-promoted, metal-free multicomponent tandem reaction, involving a [4 + 1 + 1] cycloaddition process between -substituted nitroarenes, aldehydes, and ammonium salts. Modifying the substituents on the nitroaromatic compounds effectively provides structurally diverse 2-substituted and 4-alkenylquinazolines with good to excellent yields (77%-90% and quinazoline 51 examples) and high tolerance for various inorganic ammonium salts (13 examples, such as NH·HO, NHCl, and NHHF). A new method for constructing 2,4-substituted quinazoline compounds with high selectivity from simple nitrogen source compounds was developed, and the reaction can be scaled up to a gram scale.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China.
The synthesis of chiral tetrahydroquinolines (THQs) has garnered significant interest from medicinal chemists due to their frequent presence as pharmacophores in bioactive compounds. While existing synthetic methods have primarily focused on THQs with single or multiple endocyclic chiral centers, the selective construction of THQs with both and cyclic chiral centers remains a significant challenge that requires further development. This study introduces a dynamic kinetic resolution (DKR)-based transfer hydrogenation of racemic 2-substituted quinolines, which yields structurally novel chiral THQs with consecutive and cyclic chiral centers in excellent yields and stereoselectivities (59 examples, with generally >20:1 dr and >90% ee, up to three consecutive stereocenters).
View Article and Find Full Text PDFChemistry
November 2024
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
A photoinduced copper-catalyzed enantioselective conjugate addition of acylsilanes has been developed. The conjugate acylation of α,β-unsaturated ketones and aldehydes was promoted by a copper(I)/chiral NHC catalyst under visible-light irradiation for synthesizing various 2-substituted 1,4-dicarbonyl compounds in enantioenriched forms. Mechanistic studies combining experiments and quantum chemical calculations indicated a reaction mechanism involving copper-to-acyl charge transfer (i.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, 226014, INDIA.
The tetrahydroquinoline (THQ) framework is commonly found in natural products and pharmaceutically relevant molecules. Apart from using transition metal catalysts and chiral phosphoric acids, the chiral 2-substituted 1,2,3,4-THQs are synthesized using amine oxidase biocatalysts. However, the use of imine reductases (IREDs) in their asymmetric synthesis remained unexplored.
View Article and Find Full Text PDFOrg Lett
July 2024
Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China.
Rh-catalyzed asymmetric hydrogenation of 2-substituted 4-thiochromenes and 4-chromenes was successfully developed. This method provided highly efficient access to a series of chiral 2-substituted thiochromanes and chromanes in high yields with excellent enantioselectivities (up to 99% yield, 86-99% ee). The obtained chiral 2-substituted thiochromane products were also successfully transformed to corresponding chiral substituted sulfoxides and sulfones with excellent enantioselectivities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!