AI Article Synopsis

  • The study successfully synthesized HAp-ZnO nanorod nanocomposites using a hydrothermal reactor and assessed their compatibility with MG-63 osteoblast-like cells.
  • Various techniques including XRD, FE-SEM, TEM, EDS, and TG/DSC were employed to analyze crystallinity, morphology, chemical composition, and thermal/mechanical properties.
  • Results indicated that the nanocomposites exhibited enhanced mechanical strength and thermal stability, while also demonstrating biocompatibility with human osteosarcoma cell lines, confirming their potential for biomedical applications.

Article Abstract

In the present study, HAp-ZnO nanorod nanocomposites were successfully prepared using a customized hydrothermal reactor and studied for their compatibility against MG-63 osteoblast-like cells. The crystallinity, morphology, presence of chemical elements, and surface area properties were studied by XRD (X-ray diffraction), FE-SEM (field emission scanning electron microscopy), TEM (transmission electron microscopy), EDS (energy dispersive spectrum) and N adsorption/desorption isotherm techniques, respectively. Further, the mechanical strength and thermal analysis were carried out using the nanoindentation method and thermogravimetric/differential scanning calorimeter (TG/DSC) methods, respectively. Moreover, in vitro biocompatibility studies for the prepared samples were carried out against human osteosarcoma cell lines (MG-63). The crystalline nature of the samples without any impurity phases was notified from XRD results. The formation of composites with the morphology of nanorods and the presence of desired elements in the intended ratio were verified using FE-SEM and EDS spectra, respectively. The TG/DSC results revealed the improved thermal stability of the HAp matrix, promoted by the reinforcement of the ZnO nanorods. The nanoindentation study ensured a significant enhancement in the mechanical stability of the prepared composite material. Finally, it demonstrated that the HAp matrix's mechanical strength and thermal stability were improved by the reinforcement of ZnO, and the cytotoxicity evaluation affirmed the biocompatible nature of the biomimetic hydroxyapatite in the composite.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823595PMC
http://dx.doi.org/10.3390/molecules28010345DOI Listing

Publication Analysis

Top Keywords

nanorod nanocomposites
8
cytotoxicity evaluation
8
mg-63 osteoblast-like
8
osteoblast-like cells
8
electron microscopy
8
mechanical strength
8
strength thermal
8
thermal stability
8
reinforcement zno
8
one-pot hydrothermal
4

Similar Publications

Aminated carbon nanotubes, CNT, were covalently modified with glutardialdehyde (GDI) and the redox dye Azure to form a new electrode material CNT-GDI-Azure (CGA). The nanocomposite of CGA and polysaccharide chitosan was used for the anodic determination of NADH. Compared to conventional carbon and metal electrodes, the CGA electrode drastically lowered the overpotential for NADH oxidation (by > 0.

View Article and Find Full Text PDF

Ultrafine metal-organic framework @ graphitic carbon with MoS-CNTs nanocomposites as carbon-based electrochemical sensor for ultrasensitive detection of catechin in beverages.

Mikrochim Acta

December 2024

Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.

GO/Co-MOF/PPy-350 (GPC-350) was synthesized by in situ growth of ultrafine Co-MOF on graphene oxide (GO), followed by encapsulation with polypyrrole (PPy) and calcination at 350.0℃. Meanwhile, MoS-MWCNTs (MoS-CNTs) were produced via the in situ synthesis of MoS within multi-walled carbon nanotubes (MWCNTs).

View Article and Find Full Text PDF

In Situ Growth of Covalent Organic Frameworks on Carbon Nanotubes for High-Performance Potassium-Ion Batteries.

Angew Chem Int Ed Engl

December 2024

City University of Hong Kong, Department of Physics and Materials Science, 83 Tat Chee Ave, Kowloon Tong, 999077, Hong Kong, HONG KONG.

Redox-active covalent organic frameworks (COFs) have been demonstrated as promising organic electrodes in many electrochemical devices. However, their inherently low conductivity significantly hinders the full utilization of their internal redox-active sites. To address this issue, a simple solvothermal method is used to in situ polymerize 2,4,6-triformylphloroglucinol (TP) and p-phenylenediamine (PA) on the surface of carbon nanotubes (CNTs), generating a nanocable-like COF-based nanocomposite, TpPa-COF@CNT nanocables, which contain abundant β-ketoenamine groups.

View Article and Find Full Text PDF

A novel proposal is introduced with an unlabeled electrochemical immunosensor for the detection of tumor broad-spectrum biomarker vascular endothelial growth factor (VEGF165) Copper-based metal organic frameworks (Cu MOFs)-carbon nanotubes (MWCNTs) were employed as its substrates, functionalized with methylene blue (MB) for signal enhancement. Cu-MOFs-MWCNTs nanocomposites were synthesized successfully via a solvothermal method and were then deposited on the surface of a glassy carbon electrode (GCE), with the addition of methylene blue to amplify the signal. Due to the expansive specific surface area provided by the carbon nanotubes and the amino groups facilitated by the metal-organic framework nanomaterials, the anti-VEGF165 monoclonal antibody was immobilized on the electrochemical immunosensor through covalent bonding, which could bind specifically to VEGF165, thereby causing a detectable change in the current.

View Article and Find Full Text PDF

Modifying ZnO nanorods with graphene oxide (GO) is crucial for enhancing photocatalytic degradation by boosting the concentration of reactive oxygen species (ROS) in the reaction medium. In this study, we present a straightforward chemical synthesis of ZnO nanorods embedded on GO, forming a novel nanocomposite, GOZ. This composite serves as an efficient photocatalyst for the sunlight-driven degradation of methylene blue (MB) and ciprofloxacin (CIP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!