Background: As a result of the paucity of treatment, Leishmaniasis continues to provoke about 60,000 deaths every year worldwide. New molecules are needed, and drug discovery research is oriented toward targeting proteins crucial for parasite survival. Among them, trypanothione reductase (TR) is of remarkable interest owing to its vital role in species protozoan parasite life. Our previously identified compound is a novel chemotype endowed with a unique mode of TR inhibition thanks to its binding to a formerly unknown but druggable site at the entrance of the NADPH binding cavity, absent in human glutathione reductase (hGR).

Methods: We designed and synthesized new 3-amino-1-arylpropan-1-one derivatives structurally related to compound and evaluated their potential inhibition activity on TR from (LiTR). Cluster docking was performed to assess the binding poses of the compounds.

Results: The newly synthesized compounds were screened at a concentration of 100 μM in in vitro assays and all of them proved to be active with residual activity percentages lower than 75%.

Conclusions: Compounds and were the most potent inhibitors found, suggesting that an additional aromatic ring might be promising for enzymatic inhibition. Further structure-activity relationships are needed to optimize our compounds activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823735PMC
http://dx.doi.org/10.3390/molecules28010338DOI Listing

Publication Analysis

Top Keywords

trypanothione reductase
8
nadph binding
8
inhibition
4
inhibition trypanothione
4
reductase aminopropanone
4
aminopropanone derivatives
4
derivatives interacting
4
interacting nadph
4
binding
4
binding site
4

Similar Publications

In vitro and in silico approaches manifest the anti-leishmanial activity of wild edible mushroom .

In Silico Pharmacol

December 2024

Laboratory of Cell and Molecular Biology, Department of Botany, Centre of Advanced Study, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019 India.

Visceral Leishmaniasis, caused by is the second most deadly parasitic disease, causing over 65,000 deaths annually. Synthetic drugs available in the market, to combat this disease, have numerous side effects. In this backdrop, we aim to find safer antileishmanial alternatives with minimal side effects from mushrooms, which harbour various secondary metabolites with promising efficacy.

View Article and Find Full Text PDF

Antiparasitic Activity of Coumarin-Chalcone (3-cinnamoyl-2H-chromen-2-ones) Hybrids.

Chem Biodivers

December 2024

Universidad Nacional de Colombia, Antioquia, carrera 65 59a-110, 3840, Medellín, COLOMBIA.

Coumarin-chalcone hybrids are promising compounds that could be used as lead structures in the fight against parasitic diseases. In this work, sixteen hybrids of coumarin-chalcone (3-cinnamoyl-2H-chromen-2-ones) were synthesized, and their in vitro biological activity was evaluated against intracellular amastigotes of Leishmania braziliensis and Trypanosoma cruzi; as well as their cytotoxicity in the U-937 cell line. Compounds (E)-3-(3-(3-ethoxy-4-hydroxyphenyl)acryloyl)-7-methoxy-2H-chromen-2-one (H25) and (E)-7-(diethylamino)-3-(4-(methoxyphenyl)acryloyl)-2H-chromen-2-one (H12) showed the highest antileishmanial activity with EC50 values of 18.

View Article and Find Full Text PDF

Chagas disease (CD) is a life-threatening illness caused by the protozoan Trypanosoma cruzi and there are only two drugs currently available for pharmacotherapy of this neglected infection (benznidazole and nifurtimox). Their limited efficacy in chronic phase of the disease, problems of toxicity and the growing resistance by the protozoan are directly associated to high rates of drug discontinuation by the patients. In the context of the search for new trypanocidal drug candidates, our group has been working with the chemical manipulation of eugenol to obtain new agents active against T.

View Article and Find Full Text PDF

Leishmaniasis, caused by Leishmania parasites, presents a major global health challenge due to limitations of existing treatments, including toxicity, side effects, drug resistance, and high costs. This study utilized the MuDRA (Multi-Descriptor Read Across) model for virtual screening to identify potential anti-Leishmania infantum compounds. A set of 15 terpenes and steroids was screened, leading to the identification of four promising candidates-lupeol, xylodiol, morolic acid, and trachyloban-18-oic acid.

View Article and Find Full Text PDF

The shortage of treatment options for leishmaniasis, especially those easy to administer and viable for deployment in the world's poorest regions, highlights the importance of employing these strategies to cost-effectively investigate repurposing candidates. This scoping review aims to map the studies using methodologies for drug repurposing against leishmaniasis. This study followed JBI recommendations for scoping reviews.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!