Amides, anhydrides, esters, and thioesters of 2-azirine-2-carboxylic acids were prepared by a rapid procedure at room temperature involving FeCl-catalyzed isomerization of 5-chloroisoxazoles to 2-azirine-2-carbonyl chlorides, followed by reaction with N-, O-, or S-nucleophiles mediated by an -substituted pyridine. With readily available chloroisoxazoles and a nucleophile, 2-picoline can be used as an inexpensive base. When a high yield of the acylation product is important, the reagent 2-(trimethylsilyl)pyridine/ethyl chloroformate is more suitable for the acylation with 2-azirine-2-carbonyl chlorides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9822487PMC
http://dx.doi.org/10.3390/molecules28010275DOI Listing

Publication Analysis

Top Keywords

amides anhydrides
8
anhydrides esters
8
esters thioesters
8
thioesters 2-azirine-2-carboxylic
8
2-azirine-2-carboxylic acids
8
2-azirine-2-carbonyl chlorides
8
5-chloroisoxazoles versatile
4
versatile starting
4
starting material
4
material preparation
4

Similar Publications

Secondary amines are vital functional groups in pharmaceuticals, agrochemicals, and natural products, necessitating efficient synthetic methods. Traditional approaches, including N-monoalkylation and reductive amination, suffer from limitations such as poor chemoselectivity and complexity. Herein, we present a streamlined deoxygenative photochemical alkylation of secondary amides, enabling the efficient synthesis of α-branched secondary amines.

View Article and Find Full Text PDF

The complexity of allosteric enzymatic regulation continues to inspire synthetic chemists seeking to emulate interconnected biological systems. In this work, a Pt2L4 cage capable of catalyzing the cyclization reaction of an alkynoic tosyl amide is orthogonally coupled to a diacid-catalyzed carbodiimide-hydration cycle. This new Pt-catalyzed cyclization reaction is demonstrated to exhibit electronic regulation by inclusion of different guest effectors.

View Article and Find Full Text PDF

Alkyl bistriflimidate-mediated electrochemical deaminative functionalization.

Chem Sci

December 2024

State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China

An efficient electrochemical strategy for the deaminative functionalization of alkyl amines has been described. The alkyl bistriflimidates were readily accessed by the treatment of alkyl amines with trifluoromethanesulfonic anhydride and unprecedentedly employed for C-N bond activation. They can be applied to a range of transformations, including borylation, sulfuration, selenation, sulfonation, Additionally, deaminative esterification and amidation can be performed under catalytic base conditions.

View Article and Find Full Text PDF

The heterogeneity of tumors and the lack of effective therapies have resulted in triple-negative breast cancer (TNBC) exhibiting the least favorable outcomes among breast cancer subtypes. TNBC is characterized by its aggressive nature, often leading to high rates of relapse, metastasis, and mortality. Niclosamide (Nic), an Food and Drug Administration-approved anthelmintic drug, has been repurposed for cancer treatment; however, its application for TNBC is hindered by significant challenges, including strong hydrophobicity, poor aqueous solubility, and low bioavailability.

View Article and Find Full Text PDF

Celecoxib derivatives that contain the pyrazole-linked sulfonamide moiety were synthesized, and the in vitro inhibitory impacts of the aforesaid compounds against the lactoperoxidase (LPO) enzyme were researched. To this end, LPO was purified using the affinity chromatography technique with a yield of 12.63% (319.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!