Tyrosinase is a key enzyme in the melanogenesis pathway. Melanin, the product of this process, is the main pigment of the human skin and a major protection factor against harmful ultraviolet radiation (UVR). Increased melanin synthesis due to tyrosinase hyperactivity can cause hyperpigmentation disorders, which in consequence causes freckles, age spots, melasma, or postinflammatory hyperpigmentation. Tyrosinase overproduction and hyperactivity are triggered by the ageing processes and skin inflammation as a result of oxidative stress. Therefore, the control of tyrosinase activity is the main goal of the prevention and treatment of pigmentation disorders. Natural products, especially propolis, according to their phytochemical profile abundant in polyphenols, is a very rich resource of new potential tyrosinase inhibitors. Therefore, this study focused on the assessment of the tyrosinase inhibitory potential of six extracts obtained from the European propolis samples of various origins. The results showed the potent inhibitory activity of all tested propolis extracts towards commercially available mushroom tyrosinase. The four most active propolis extracts showed inhibitory activity in the range of 86.66-93.25%. Apart from the evaluation of the tyrosinase inhibition, the performed research included UHPLC-DAD-MS/MS (ultra high performance liquid chromatography coupled with diode array detection and tandem mass spectrometry) phytochemical profiling as well as antioxidant activity assessment using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the 2,2"-azino-(3-ethylbenzothiazoline-6-sulfuric acid (ABTS) radical scavenging tests. Moreover, statistical analysis was used to correlate the tyrosinase inhibitory and antioxidant activities of propolis extracts with their phytochemical composition. To summarise, the results of our research showed that tested propolis extracts could be used for skin cosmeceutical and medical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9822166 | PMC |
http://dx.doi.org/10.3390/molecules28010055 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!