In this research, copper (II) oxide nanoparticles were prepared by an ecofriendly green method using the extract of leaves (Molokhaia) as a surfactant, capping and anti-agglomeration agent. The ecofriendly green CuO NPs were characterized using different chemical and physical techniques and the results confirmed the formation of monoclinic tenorite CuO nanoparticles with an average particle size of 12 nm and BET surface area of 11.1 m/g. The eco-friendly green CuO NPs were used in environmental remediation for the efficient catalytic degradation of direct violet dye via advanced oxidation process (AOP) in presence of HO. The impact of AOP environmental parameters affecting the degradation process was investigated. Moreover, the catalytic degradation of the direct violet dye using the ecofriendly green CuO NPs was studied kinetically and thermodynamically and the results showed that the catalytic degradation process agreed well with the pseudo-second-order kinetic model and the process was spontaneous and endothermic in nature. Finally, high catalytic degradation of the direct violet dye was observed when the eco-friendly prepared green CuO NPs were placed in real water samples.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9822215 | PMC |
http://dx.doi.org/10.3390/molecules28010016 | DOI Listing |
Biomacromolecules
January 2025
Department of Chemistry and Material Science, Langfang Normal University, Langfang, Hebei 065000, P.R. China.
Green separation of protein (e.g., bovine serum albumin (BSA)) by low-melting mixture solvents (LoMMSs) depends on the underlying mechanism between BSA and LoMMSs.
View Article and Find Full Text PDFCurr Pharm Des
January 2025
Department of Pharmacy, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
Background: The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
Polymer composite materials encounter considerable challenges in sustaining superior tribological properties at high rotational speeds. Inspired by the microstructure of dragonfly wings, a novel thermally stable and ambient pressure curing poly(urea-imide) resin (PURI) with excellent tribological properties has been eco-friendly synthesis using bio-based greener solvents. Furthermore, The PURI composites enhanced with polyether ether ketone (PEEK) and Polytetrafluoroethylene (PTFE) blended fabrics demonstrate excellent mechanical, with tensile strengths exceeding 175 MPa.
View Article and Find Full Text PDFBMC Chem
January 2025
Department of Pharmaceutical Chemistry, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine.
Novel, «green» and simple visible spectrophotometric procedures for the determination of six dihydropyridines CCBs (amlodipine besylate (AML), lacidipine (LAC), levamlodipine besylate (LAML), nifedipine (NIF), nimodipine (NIM) and nitrendipine (NIT)) through derivatization with the sulfophthalein dye bromophenol blue (BPB) have been developed. The optimal parameters for CCBs spectrophotometric analysis via complex formation using BPB were as follows: detection wavelength-596 nm, reaction time-5 min, ratio of reacting components-1:1, operating temperature-25 ± 2 °C. The concentration was linearly proportional to absorbance values in the range of 3.
View Article and Find Full Text PDFBMC Med Educ
January 2025
Environmental Health, High Institute of Public Health, Alexandria University, Alexandria, Egypt.
Background: The dental industry is associated with significant environmental impacts so there is a growing need for eco-friendly practices in dentistry. This study aimed to assess dental interns' knowledge and practices regarding eco-friendly dentistry before and after the implementation of the environmental educational program.
Methods: An interventional quasi-experimental study (one group pre-test-post-test design) was conducted on 69 intern dentists at the Faculty of Dentistry Alexandria University.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!