Recent Progress in Electrochemical Upgrading of Bio-Oil Model Compounds and Bio-Oils to Renewable Fuels and Platform Chemicals.

Materials (Basel)

Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Rd, Unit 3222, Storrs, CT 06269, USA.

Published: January 2023

Sustainable production of renewable carbon-based fuels and chemicals remains a necessary but immense challenge in the fight against climate change. Bio-oil derived from lignocellulosic biomass requires energy-intense upgrading to produce usable fuels or chemicals. Traditional upgrading methods such as hydrodeoxygenation (HDO) require high temperatures (200−400 °C) and 200 bar of external hydrogen. Electrochemical hydrogenation (ECH), on the other hand, operates at low temperatures (<80 °C), ambient pressure, and does not require an external hydrogen source. These environmental and economically favorable conditions make ECH a promising alternative to conventional thermochemical upgrading processes. ECH combines renewable electricity with biomass conversion and harnesses intermediately generated electricity to produce drop-in biofuels. This review aims to summarize recent studies on bio-oil upgrading using ECH focusing on the development of novel catalytic materials and factors impacting ECH efficiency and products. Here, electrode design, reaction temperature, applied overpotential, and electrolytes are analyzed for their impacts on overall ECH performance. We find that through careful reaction optimization and electrode design, ECH reactions can be tailored to be efficient and selective for the production of renewable fuels and chemicals. Preliminary economic and environmental assessments have shown that ECH can be viable alternative to convention upgrading technologies with the potential to reduce CO2 emissions by 3 times compared to thermochemical upgrading. While the field of electrochemical upgrading of bio-oil has additional challenges before commercialization, this review finds ECH a promising avenue to produce renewable carbon-based drop-in biofuels. Finally, based on the analyses presented in this review, directions for future research areas and optimization are suggested.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9822173PMC
http://dx.doi.org/10.3390/ma16010394DOI Listing

Publication Analysis

Top Keywords

fuels chemicals
8
progress electrochemical
4
electrochemical upgrading
4
upgrading bio-oil
4
bio-oil model
4
model compounds
4
compounds bio-oils
4
bio-oils renewable
4
renewable fuels
4
fuels platform
4

Similar Publications

Objective: To characterize early physiologic stresses imposed by surgery by applying metabolomic analyses to deeply phenotype pre- and postoperative plasma and urine of patients undergoing elective surgical procedures.

Background: Patients experience perioperative stress through depletion of metabolic fuels. Bowel stasis or injury might allow more microbiome-derived uremic toxins to enter the blood, while the liver and kidney are simultaneously clearing analgesic and anesthetic drugs.

View Article and Find Full Text PDF

Bio-inspired Catalyst-Modified Photocathode for Bias-Free Photoelectrochemical NADH Regeneration.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning, 116024, China.

Cofactors such as nicotinamide adenine dinucleotide (NADH) and its phosphorylated form (NADPH) play a crucial role in natural enzyme-catalyzed reactions for the synthesis of chemicals. However, the stoichiometric supply of NADH for artificial synthetic processes is uneconomical. Here, inspired by the process of cofactor NADPH regeneration in photosystem I (PSI), catalyst-modified photocathodes are constructed on the surface of polythiophene-based semiconductors (PTTH) via self-assembly for photoelectrochemical catalytic NADH regeneration.

View Article and Find Full Text PDF

Burning of municipal waste in household furnaces and the health of their owners.

Sci Rep

December 2024

Prospecting and Environment Laboratory (Promediam), Universidad Politecnica de Madrid, Alenza 4, 28003, Madrid, Spain.

The aim of the study was to determine the scale of emission and airborne dispersion of selected pollutants (PM2.5, PM10, TVOC, HCHO) associated with the combustion of various types of municipal waste (MW), its mixed stream and separate fractions, in a household furnace, as compared to conventional (CF) and alternative (AF) fuels. We demonstrated that each type of fuel (AF, CF, AFw) combusted in a household furnace is a significant source of air pollutants, especially fine PM2.

View Article and Find Full Text PDF

Steering acidic oxygen reduction selectivity of single-atom catalysts through the second sphere effect.

Nat Commun

December 2024

Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, China.

Natural enzymes feature distinctive second spheres near their active sites, leading to exquisite catalytic reactivity. However, incumbent synthetic strategies offer limited versatility in functionalizing the second spheres of heterogeneous catalysts. Here, we prepare an enzyme-mimetic single Co-N atom catalyst with an elaborately configured pendant amine group in the second sphere via 1,3-dipolar cycloaddition, which switches the oxygen reduction reaction selectivity from the 4e to the 2e pathway under acidic conditions.

View Article and Find Full Text PDF

Toward Green Liquid Nitrogen Fertilizer Synthesis: Plasma-Driven Nitrogen Oxidation and Partial Electrocatalytic Reduction.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Liquid fertilizers, particularly when integrated with precision irrigation systems, offer a more efficient and sustainable alternative to traditional solid nitrogen fertilizers. The industrial production of ammonium nitrate (NHNO) is environmentally detrimental due to its reliance on fossil fuels. This study introduces an innovative air-to-NOx-to-NHNO pathway for synthesizing liquid nitrogen fertilizer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!