AI Article Synopsis

  • The study focuses on the corrosion effects on lead-glazed ceramics from the Prague area, specifically from the Romanesque to Renaissance periods, examining how environmental factors lead to deterioration.
  • Various advanced analytical techniques like XRF, XRD, and SEM/EDS were employed to identify the causes of surface degradation and to characterize different types of defects.
  • Findings indicate that while the original glazes were chosen correctly during production, long-term exposure to unfavorable conditions contributed significantly to their deterioration.

Article Abstract

Corrosion effects in deposit environments (soil, waste pit, etc.), together with the glaze adherence and fit, could cause severe deterioration accompanied by different types of defects or growth of corrosion products. The aim of this work was to identify the source of surface degradation of the lead-glazed ceramics sets from the Prague area from the Romanesque to the Renaissance period. A combination of X-ray fluorescence (XRF), X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS), and simultaneous thermal analysis (STA) techniques along with stress state calculations was used to study the defects. Based on the interpretation of the possible sources of the observed defects, four types of degradation effects were schematically expressed for the archaeological samples. It was shown that the glazes were already appropriately chosen during the production of the Romanesque tiles and that their degradation occurred only due to long-term exposure to unsuitable environmental conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9822467PMC
http://dx.doi.org/10.3390/ma16010375DOI Listing

Publication Analysis

Top Keywords

degradation
4
degradation processes
4
processes medieval
4
medieval renaissance
4
renaissance glazed
4
glazed ceramics
4
ceramics corrosion
4
corrosion effects
4
effects deposit
4
deposit environments
4

Similar Publications

Mesencephalic astrocyte-derived neurotrophic factor inhibits neuroinflammation through autophagy-mediated α-synuclein degradation.

Arch Gerontol Geriatr

December 2024

Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China. Electronic address:

Article Synopsis
  • Parkinson's disease (PD) is characterized by the loss of dopamine neurons and is influenced by α-synuclein aggregation and neuroinflammation, with microglia playing a key role.
  • Previous research identified mesencephalic astrocyte-derived neurotrophic factor (MANF) as a potential inhibitor of α-synuclein accumulation and neuroinflammation, though its molecular mechanisms were not fully understood.
  • This study found that reducing MANF expression increased inflammation (TNF-α), while exogenous MANF promoted autophagy, reduced α-synuclein levels, and inhibited neuroinflammation, suggesting that MANF could be a therapeutic target for PD through its role in autophagy.
View Article and Find Full Text PDF

Iron regulatory protein 2 (IRP2), a post-transcriptional regulator of cellular iron metabolism has been associated with susceptibility to chronic obstructive pulmonary disease (COPD). Resistive breathing (RB) is the hallmark of the pathophysiology of obstructive airway diseases, especially during exacerbations, where increased mechanical stress is imposed on the lung. We have previously shown that RB, through tracheal banding, mimicking severe airway obstruction, induces pulmonary inflammation and injury in previously healthy mice.

View Article and Find Full Text PDF

Efficacy and Safety of Glucagon-Like Peptide-1 Receptor Agonists for Weight Loss Among Adults Without Diabetes : A Systematic Review of Randomized Controlled Trials.

Ann Intern Med

January 2025

Centre of Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital; Division of Experimental Medicine, McGill University; Department of Epidemiology, Biostatistics and Occupational Health, McGill University; Department of Medicine, McGill University; and Division of Cardiology, Jewish General Hospital/McGill University, Montreal, Quebec, Canada (M.J.E.).

Background: Recent randomized controlled trials (RCTs) have investigated glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and dual or triple co-agonists for weight loss among adults with overweight or obesity and without diabetes.

Purpose: To assess the efficacy and safety of GLP-1 RAs and co-agonists for the treatment of obesity among adults without diabetes.

Data Sources: MEDLINE, Embase, and Cochrane CENTRAL from inception to 4 October 2024.

View Article and Find Full Text PDF

Photoredox/Nickel Dual-Catalytic Asymmetric Silylarylation of Alkenes.

Org Lett

January 2025

Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China.

The efficient construction of chiral aryl-containing organosilicon frameworks via catalytic enantioselective three-component silylarylation of alkenes remains a great challenge. Herein, a photoredox/nickel dual-catalytic asymmetric protocol has been disclosed by using a chiral biimidazoline (BiIM) as the ligand, silylboranes as the silyl radical precursors, aryl bromides as the coupling partners, and morpholine as the promoter. Remarkably, the reaction features mild and green conditions, high reaction efficiency, and excellent enantioselectivity, enabling the facile synthesis of valuable chiral tropic acid and sila-isoflavanone structures.

View Article and Find Full Text PDF

Skeletal muscles contain lipids inside and outside cells, namely intramyocellular lipids (IMCL) and extramyocellular lipids (EMCL), respectively; lipids have also been found to be interspersed between these muscles as adipose tissue, namely intermuscular adipose tissue (IMAT). Metabolized IMCL has been recognized as an important substrate for energy production and their metabolism is determined by the muscle oxidative capacity. Therefore, it has been speculated that muscle oxidative capacity is related to muscle lipid content.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!