As a progressive surface-hardening technology, laser shock processing (LSP) can enhance the mechanical properties and extend fatigue life for metallic components through laser-generated high-pressure plasma shock waves. In this work, LSP was used to treat titanium alloy Ti-13Nb-13Zr experimental coupons, and the microstructural response and surface mechanical properties of the Ti-13Nb-13Zr experimental coupons were investigated. After the LSP treatment, the X-ray diffraction (XRD) peaks were shifted without any new phase formation. The surface roughness of the experimental coupons increased, which can be explained by the LSP-induced severe plastic deformation. The LSP treatment effectively enhanced the surface compressive residual stress of Ti-13Nb-13Zr. Meanwhile, the microhardness of the Ti-13Nb-13Zr was also obviously increased after the LSP treatment. The experimental results also showed that the number of shocks times is an important factor in the improvement of surface mechanical properties. LSP treatment with multiple shocks can lead to more severe plastic deformation. The surface roughness, surface compressive residual stress and microhardness of the Ti-13Nb-13Zr experimental coupons shocked three times are higher than those after one shock. What is more, grain refinement accounts for the mechanical properties' enhancements after the LSP treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9822224PMC
http://dx.doi.org/10.3390/ma16010238DOI Listing

Publication Analysis

Top Keywords

lsp treatment
20
mechanical properties
16
experimental coupons
16
surface mechanical
12
ti-13nb-13zr experimental
12
titanium alloy
8
alloy ti-13nb-13zr
8
laser shock
8
shock processing
8
surface roughness
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!