Composite materials are the most common materials in use in modern dentistry. Over the years, the methods of photopolymerization of composite materials have been improved with the use of various devices, such as quartz tungsten halogen lamps (QTHs), light-emitting diode units (LEDs), plasma-arc lamps and argon-ion lasers. This study aimed to compare the mechanical properties of a composite material, depending on the time and mode of photopolymerization. One hundred and forty rectangular specimens (25 × 2 × 2 mm) and forty-two disc-shaped samples (5 mm diameter and 2 mm thickness) were prepared from shade A2 Boston composite resin. Samples were cured using the following seven photopolymerization protocols: four fast-cure modes (full power for 3, 5, 10, and 20 s), two pulse-cure modes (5 and 10 shots of 1 s exposures at full power), and one step-cure mode (soft start with a progressive cycle lasting 9 s). Specimens were subjected to a flexural strength test, Vickers microhardness test, and FTIR spectroscopy test. A 2-factor ANOVA and post-hoc tests were carried out to assess the differences in the flexural strength parameter between the tested groups of samples before and after aging. A mixed-model ANOVA was carried out to assess the differences in the Vickers microhardness parameter between the tested groups of samples before and after aging. The lowest values of flexural strength (p < 0.001) and Vickers microhardness (p < 0.001) were obtained for the 3 s mode for the pre- and post-aging groups. The FTIR mapping tests showed a much more homogeneous chemical structure of the composite after 20 s of continuous irradiation, compared to the sample irradiated for 5 s in the continuous mode. The mode and cure time affects the mechanical properties of the composite resin. Appropriate selection of the cure mode and time ensures better mechanical properties of composite resin. This suggests that the survival of dental restorations within the oral cavity could be extended by using longer photopolymerization durations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820875 | PMC |
http://dx.doi.org/10.3390/ma16010113 | DOI Listing |
Adv Healthc Mater
January 2025
School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
Effective treatment of bone diseases is quite tricky due to the unique nature of bone tissue and the complexity of the bone repair process. In combination with biological materials, cells and biological factors can provide a highly effective and safe treatment strategy for bone repair and regeneration, especially based on these multifunctional hydrogel interface materials. However, itis still a challenge to formulate hydrogel materials with fascinating properties (e.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, P. R. China.
Violet phosphorus (VP) is a phosphorus allotrope first discovered by Hittorf in 1865, which has aroused more attention in the biomedical field in recent years attributed to its gradually discovered unique properties. VP can be further categorized into bulk VP, VP nanosheets (VPNs), and VP quantum dots (VPQDs), and chemical vapor transport (CVT), liquid-phase/mechanical/laser exfoliation, and solvothermal synthesis are the common preparation approaches of bulk VP, VPNs, and VPQDs, respectively. Compared with another phosphorus allotrope (black phosphorus, BP) that is once highly regarded in biomedical applications, VP nanomaterial (namely VPNs and VPQDs) not only exhibits tunable bandgap, moderate on/off current ratio, and good biodegradability, but shows enhanced stability and biosafety as well, allowing it to be a promising candidate for a variety of biomedical applications like antibacterial therapy, anticancer therapy, and biosensing and disease diagnosis.
View Article and Find Full Text PDFRegen Biomater
December 2024
Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China.
Periodontitis, a widespread inflammatory disease, is the major cause of tooth loss in adults. While mechanical periodontal therapy benefits the periodontal disease treatment, adjunctive periodontal therapy is also necessary. Topically applied anti-inflammatory agents have gained considerable attention in periodontitis therapy.
View Article and Find Full Text PDFHeliyon
January 2025
Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Kemivägen 10, 41296 Gothenburg.
Bulky cellulosic network structures (BRC) with densities between 60 and 130 g/l were investigated as a sustainable alternative to fossil-based foams for impact liners in bicycle helmets. The mechanical properties of BRC foams were characterized across a wide range of strain rates and incorporated into a validated finite element model of a hardshell helmet. Virtual impact tests simulating both consumer information and certification scenarios were conducted to compare BRC-lined helmets against conventional expanded polystyrene (EPS) designs.
View Article and Find Full Text PDFACS Mater Lett
January 2025
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, United States.
Photocurable self-healing elastomers are promising candidates for producing complex soft devices that can mend damage. However, the practicality of these materials is limited by reliance on external stimuli, custom synthesis, manual realignment, and multihour healing cycles. This paper introduces a tough 3D-printable hybrid acrylate/thiol-ene elastomer (prepared with commercially available precursors) that exhibits nearly instantaneous damage repair in the absence of external stimuli.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!