The accurate prediction of fatigue performance is of great engineering significance for the safe and reliable service of components. However, due to the complexity of influencing factors on fatigue behavior and the incomplete understanding of the fatigue failure mechanism, it is difficult to correlate well the influence of various factors on fatigue performance. Machine learning could be used to deal with the association or influence of complex factors due to its good nonlinear approximation and multi-variable learning ability. In this paper, the gradient boosting regression tree model, the long short-term memory model and the polynomial regression model with ridge regularization in machine learning are used to predict the fatigue strength of a nickel-based superalloy GH4169 under different temperatures, stress ratios and fatigue life in the literature. By dividing different training and testing sets, the influence of the composition of data in the training set on the predictive ability of the machine learning method is investigated. The results indicate that the machine learning method shows great potential in the fatigue strength prediction through learning and training limited data, which could provide a new means for the prediction of fatigue performance incorporating complex influencing factors. However, the predicted results are closely related to the data in the training set. More abundant data in the training set is necessary to achieve a better predictive capability of the machine learning model. For example, it is hard to give good predictions for the anomalous data if the anomalous data are absent in the training set.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820995 | PMC |
http://dx.doi.org/10.3390/ma16010046 | DOI Listing |
JMIR Nurs
January 2025
Department of Healthcare Epidemiology, Graduate School of Medicine and Public Health, Kyoto University, Kyoto, Japan.
This research letter discusses the impact of different file formats on ChatGPT-4's performance on the Japanese National Nursing Examination, highlighting the need for standardized reporting protocols to enhance the integration of artificial intelligence in nursing education and practice.
View Article and Find Full Text PDFJMIR Hum Factors
January 2025
Department of Value Improvement, St. Antonius Hospital, Nieuwegein, Netherlands.
Background: Patients with cerebrovascular accident (CVA) should be involved in setting their rehabilitation goals. A personalized prediction of CVA outcomes would allow care professionals to better inform patients and informal caregivers. Several accurate prediction models have been created, but acceptance and proper implementation of the models are prerequisites for model adoption.
View Article and Find Full Text PDFJMIR Form Res
January 2025
Department of Psychology, The University of Texas at San Antonio, San Antonio, TX, United States.
Background: Perception-related errors comprise most diagnostic mistakes in radiology. To mitigate this problem, radiologists use personalized and high-dimensional visual search strategies, otherwise known as search patterns. Qualitative descriptions of these search patterns, which involve the physician verbalizing or annotating the order he or she analyzes the image, can be unreliable due to discrepancies in what is reported versus the actual visual patterns.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
JMIR Publications, Toronto, ON, Canada.
J Med Internet Res
January 2025
Univ Rennes, CHU Rennes, INSERM, LTSI - UMR 1099, F-35000 Rennes, France.
Background: To reduce the mortality related to bladder cancer, efforts need to be concentrated on early detection of the disease for more effective therapeutic intervention. Strong risk factors (eg, smoking status, age, professional exposure) have been identified, and some diagnostic tools (eg, by way of cystoscopy) have been proposed. However, to date, no fully satisfactory (noninvasive, inexpensive, high-performance) solution for widespread deployment has been proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!