Amyloids and antimicrobial peptides (AMPs) have many similarities, e.g., both kill microorganisms by destroying their membranes, form aggregates, and modulate the innate immune system. Given these similarities and the fact that the antimicrobial properties of short amyloids have not yet been investigated, we chose a group of potentially antimicrobial short amyloids to verify their impact on bacterial and eukaryotic cells. We used AmpGram, a best-performing AMP classification model, and selected ten amyloids with the highest AMP probability for our experimental research. Our results indicate that four tested amyloids: VQIVCK, VCIVYK, KCWCFT, and GGYLLG, formed aggregates under the conditions routinely used to evaluate peptide antimicrobial properties, but none of the tested amyloids exhibited antimicrobial or cytotoxic properties. Accordingly, they should be included in the negative datasets to train the next-generation AMP prediction models, based on experimentally confirmed AMP and non-AMP sequences. In the article, we also emphasize the importance of reporting non-AMPs, given that only a handful of such sequences have been officially confirmed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821130PMC
http://dx.doi.org/10.3390/ijms24010804DOI Listing

Publication Analysis

Top Keywords

antimicrobial properties
12
short amyloids
12
tested amyloids
8
amyloids
7
antimicrobial
5
testing antimicrobial
4
properties
4
properties selected
4
selected short
4
amyloids amyloids
4

Similar Publications

Analysis of the spatial distribution of metabolites in Aloe vera leaves by mass spectrometry imaging and UHPLC-UHRMS.

Sci Rep

January 2025

Department of Polymers and Biopolymers, Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave., Rzeszów, 35-959, Poland.

This study presents an investigation of the chemical composition of Aloe vera leaf tissue with a focus on the spatial distribution of compounds. The composition was studied using two mass spectrometry imaging techniques: silver-109 nanoparticles assisted laser desorption/ionization mass spectrometry imaging (AgNPs-LDI-MSI) and laser ablation-remote atmospheric pressure photoionization/chemical ionization mass spectrometry imaging (LARAPPI/CI-MSI) and the identification was aided by ultra-high-performance liquid chromatography and ultra-high-resolution mass spectrometry (UHPLC-UHRMS) analysis. The results showed an abundance of phenolic compounds with antioxidant, antimicrobial, and anti-inflammatory properties, making it a beneficial food additive and food packaging material.

View Article and Find Full Text PDF

Enterococcus faecalis is responsible for numerous serious infections, and treatment options often include ampicillin combined with an aminoglycoside or dual beta-lactam therapy with ampicillin and a third-generation cephalosporin. The mechanism of dual beta-lactam therapy relies on the saturation of penicillin-binding proteins (PBPs). Ceftobiprole exhibits high affinity binding to nearly all E.

View Article and Find Full Text PDF

This study aimed at assessing the mechanical properties and degradation of commercial bioactive materials. The bioactive materials (Activa Bioactive Restorative, Beautifil Flow Plus F00, F03, Predicta Bulk Bioactive) and composite resin Filtek Supreme Flow were submitted to flexural and diametral tensile strength tests (FS, DTS), modulus of elasticity (ME) evaluation, and analysis of aging in 70% ethanol and saliva on their hardness and sorption. The results for DTS ranged from 33.

View Article and Find Full Text PDF

Malachite green (MG) is used as a dye for materials such as wood, cotton, and nylon, and is used in aquaculture to prevent fungal and protozoan diseases. However, it is highly toxic, with carcinogenic, mutagenic, and teratogenic properties, resulting in bans worldwide. Despite this, MG is still frequently used in many countries due to its efficacy and economy.

View Article and Find Full Text PDF

A short review on polysaccharide-based nanocomposite adsorbents for separation and biomedical applications.

Int J Biol Macromol

January 2025

Department of Chemical Engineering, Arak University, Arak, Iran. Electronic address:

Polysaccharides such as chitosan, alginate, cellulose, and carrageenan have emerged as promising adsorbents due to their biodegradability, abundant availability, and diverse chemical functionality. These biopolymers exhibit promising performance for adsorption of a wide range of pollutants including heavy metals (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!