This study aimed to evaluate the effect of silver nanoparticles (AgNPs) alone or in combination with calcium hydroxide (Ca(OH)) on the proliferation, viability, attachment, migration, and osteogenic differentiation of human mesenchymal stem cells (hMSCs). Different concentrations of AgNPs alone or mixed with Ca(OH) were prepared. Cell proliferation was measured using AlamarBlue, and hMSCs attachment to dentin disks was evaluated using scanning electron microscopy. Live-dead imaging was performed to assess apoptosis. Wound healing ability was determined using the scratch-migration assay. To evaluate osteogenic differentiation, the expression of Runt-related transcription factor (RUNX2), Transforming growth factor beta-1 (TGF-β1), Alkaline Phosphatase (ALP), and Osteocalcin (OCN) were measured using real-time reverse transcriptase polymerase chain reaction. ALP staining and activity were also performed as indicators of osteogenic differentiation. AgNPs alone seemed to favor cell attachment. Lower concentrations of AgNPs enhanced cell proliferation. AgNP groups showed markedly less apoptosis. None of the medicaments had adverse effects on wound closure. The expression of TGF-β1 was significantly upregulated in all groups, and OCN was highly expressed in the AgNP groups. AgNPs 0.06% showed the most enhanced ALP gene expression levels, activity, and marked cytochemical staining. In conclusion, AgNPs positively affect hMSCs, making them a potential biomaterial for various clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821315PMC
http://dx.doi.org/10.3390/ijms24010702DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
16
silver nanoparticles
8
combination calcium
8
calcium hydroxide
8
viability attachment
8
attachment migration
8
migration osteogenic
8
differentiation human
8
human mesenchymal
8
mesenchymal stem
8

Similar Publications

Chronic osteomyelitis caused by implant infections is a common complication following orthopedic surgery. Preventing bacterial infection and simultaneously improving bone regeneration are the key for osteomyelitis. Current treatments include systemic antibiotics and multiple surgical interventions, but the strategies available for treatment are limited.

View Article and Find Full Text PDF

Humerus greater tuberosity (HGT) avulsion fracture is one of the most common types of proximal humerus fractures. The presence of motion and gap lead to the failure of implants, due to the force pulling from the supraspinatus. In this work, electrospinning technology was applied to fabricate PCL-PEG/CS/AST nanofiber with superior biocompatibility and mechanical property.

View Article and Find Full Text PDF

Melatonin regulation and the function of the periodontal ligament: Future perspective and challenges.

World J Stem Cells

January 2025

Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia 27100, Italy.

The present article reviews the emerging role of melatonin (MT) and the Hippo-Yes-associated protein signaling pathway in periodontal regeneration, highlighting their potential to delay the aging process of periodontal ligament stem cells (PDLSCs). Oxidative stress and cellular senescence are major obstacles in regenerative therapies, especially in an aging population. MT, a potent antioxidant, restores the morphology, proliferation, and osteogenic differentiation potential of PDLSCs under oxidative stress conditions.

View Article and Find Full Text PDF

Nuclear morphology, which modulates chromatin architecture, plays a critical role in regulating gene expression and cell functions. While most research has focused on the direct effects of nuclear morphology on cell fate, its impact on the cell secretome and surrounding cells remains largely unexplored, yet is especially crucial for cell-based therapies. In this study, we fabricated implants with a micropillar topography using methacrylated poly(octamethylene citrate)/hydroxyapatite (mPOC/HA) composites to investigate how micropillar-induced nuclear deformation influences cell paracrine signaling for osteogenesis and cranial bone regeneration.

View Article and Find Full Text PDF

Osteomyelitis has gradually become a catastrophic complication in orthopedic surgery due to the formation of bacterial biofilms on the implant surface and surrounding tissue. The therapeutic challenges of antibiotic resistance and poor postoperative osseointegration provide inspiration for the development of bioactive implants. We have strategically designed bioceramic scaffolds modified with (LR) and bacteriophages (phages) to achieve both antibacterial and osteogenic effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!