Predicting the ability of nanoparticles (NP) to access the tumor is key to the success of chemotherapy using nanotherapeutics. In the present study, the ability of the dual NP-based theranostic system to accumulate in the tumor was evaluated in vivo using intravital microscopy (IVM) and MRI. The system consisted of model therapeutic doxorubicin-loaded poly(lactide-co-glycolide) NP (Dox-PLGA NP) and novel hybrid Ce-doped maghemite NP encapsulated within the HSA matrix (hMNP) as a supermagnetic MRI contrasting agent. Both NP types had similar sizes of ~100 nm and negative surface potentials. The level of the hMNP and PLGA NP co-distribution in the same regions of interest (ROI, ~2500 µm) was assessed by IVM in mice bearing the 4T1-mScarlet murine mammary carcinoma at different intervals between the NP injections. In all cases, both NP types penetrated into the same tumoral/peritumoral regions by neutrophil-assisted extravasation through vascular micro- and macroleakages. The maximum tumor contrasting in MRI scans was obtained 5 h after hMNP injection/1 h after PLGA NP injection; the co-distribution level at this time reached 78%. Together with high contrasting properties of the hMNP, these data indicate that the hMNP and PLGA NPs are suitable theranostic companions. Thus, analysis of the co-distribution level appears to be a useful tool for evaluation of the dual nanoparticle theranostics, whereas assessment of the leakage areas helps to reveal the tumors potentially responsive to nanotherapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820361PMC
http://dx.doi.org/10.3390/ijms24010627DOI Listing

Publication Analysis

Top Keywords

hmnp plga
8
co-distribution level
8
hmnp
5
supermagnetic human
4
human serum
4
serum albumin
4
albumin hsa
4
hsa nanoparticles
4
nanoparticles plga-based
4
plga-based doxorubicin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!