AI Article Synopsis

  • * Poly(lactide-co-glycolide) (PLGA) NPs averaging 100-150 nm in size were synthesized, and two analytical techniques—Dynamic Light Scattering (DLS) and Surface-Enhanced Raman Scattering (SERS)—were used to evaluate their stability and chemical properties.
  • * Results indicated that while DLS showed stable size and properties, SERS revealed a gradual loss of HA on the NP surface over two weeks, showcasing the need for robust stability characterization methods.

Article Abstract

Nanoparticles (NPs) coated with hyaluronic acid (HA) seem to be increasingly promising for targeted therapy due to HA chemical versatility, which allows them to bind drugs of different natures, and their affinity with the transmembrane receptor CD-44, overexpressed in tumor cells. However, an essential aspect for clinical use of NPs is formulation stability over time. For these reasons, analytical techniques capable of characterizing their physico-chemical properties are needed. In this work, poly(lactide-co-glycolide) (PLGA) NPs with an average diameter of 100-150 nm, coated with a few 10 s of nm of HA, were synthesized. For stability characterization, two complementary investigative techniques were used: Dynamic Light Scattering (DLS) and Surface-Enhanced Raman Scattering (SERS) spectroscopy. The first technique provided information on size, polidispersity index, and zeta-potential, and the second provided a deeper insight on the NP surface chemicals, allowing distinguishing of HA-coated NPs from uncoated ones. Furthermore, in order to estimate formulation stability over time, NPs were measured and monitored for two weeks. SERS results showed a progressive decrease in the signal associated with HA, which, however, is not detectable by the DLS measurements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820697PMC
http://dx.doi.org/10.3390/ijms24010601DOI Listing

Publication Analysis

Top Keywords

surface-enhanced raman
8
formulation stability
8
stability time
8
nps
5
characterization hyaluronic
4
hyaluronic acid-coated
4
acid-coated plga
4
plga nanoparticles
4
nanoparticles surface-enhanced
4
raman spectroscopy
4

Similar Publications

Kan-AAE-driven synthetic SERS spectra generation method for Precise cancer identification.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

School of Opto-Electronic and Communication Engineering, Xiamen University of Technology, Xiamen, China. Electronic address:

Surface-Enhanced Raman Spectroscopy (SERS) is gaining popularity in cancer detection studies because it offers a non-invasive and rapid approach. Label-free SERS detection techniques often needs machine learning, which depends on adequate data for training. The scarcity of blood serum samples from cancer patients, due to challenges in collection linked to confidentiality concerns and other restrictions, can result in model overfitting and poor generalization ability.

View Article and Find Full Text PDF

Beta - stimulant, that is, β - adrenergic stimulant, also known as β - agonists, is bioactive catecholamine compounds naturally produced in animals' adrenal medulla glands that induce relaxation in asthmatic airway smooth muscles upon inhalation while also temporarily boosting athletic alertness and alleviating fatigue. However, their potential for dependency poses health risks including unnoticed exacerbation leading to severe illness or fatality prompting their inclusion on WADA's prohibited substances list. Surface - enhanced Raman spectroscopy (SERS) offers a rapid, sensitive, and label - free means for identifying characteristic peaks associated with β - agonist compounds.

View Article and Find Full Text PDF

Glutathione serves as a common biomarkers in tumor diagnosis and treatment. The levels of its intracellular concentration permit detailed investigation of the tumor microenvironment. However, low polarization and weak Raman scattering cross-section make direct and indirect Raman detection challenging.

View Article and Find Full Text PDF

Here we describe the synthesis and evaluation of a molecular corrosion sensor that can be applied in situ in aerospace coatings, then used to detect corrosion after the coating has been applied. A pH-sensitive molecule, 4-mercaptopyridin (4-MP), is attached to a gold nanoparticle to allow surface-enhanced Raman-scattering (SERS) for signal amplification. These SERS nanoparticles, when combined with an appropriate micron-sized carrier system, are incorporated directly into an MIL-SPEC coating and used to monitor the process onset and progression of corrosion using pH changes occurring at the metal-coating interface.

View Article and Find Full Text PDF

Highly Stable Flexible SERS-Imprinted Membrane Based on Plasmonic MOF Material for the Selective Detection of Chrysoidin in Environmental Water.

Polymers (Basel)

December 2024

Hainan Engineering Research Center of Tropical Ocean Advanced Opto-Electrical Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.

Chrysoidin (CG) can be ingested into the human body through the skin and cause chronic toxicity, so the detection of CG levels in the environment is crucial. In this study, we synthesize F-Ag@ZIF-8/PVC molecular-imprinted membranes (FZAP-MIM) by an innovative combination of SERS detection, membrane separation, and a molecular-imprinted technique in order to perform the analysis of CG in water. The plasmonic MOF material as a SERS substrate helps to enrich the target and realize the spatial overlap of the target with the nanoparticle tip "hotspot".

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!