Influence of the Peripheral Nervous System on Murine Osteoporotic Fracture Healing and Fracture-Induced Hyperalgesia.

Int J Mol Sci

Centre for Medical Biotechnology (ZMB), Department of Orthopedic Surgery, Experimental Orthopedics, University of Regensburg, 93053 Regensburg, Germany.

Published: December 2022

Osteoporotic fractures are often linked to persisting chronic pain and poor healing outcomes. Substance P (SP), α-calcitonin gene-related peptide (α-CGRP) and sympathetic neurotransmitters are involved in bone remodeling after trauma and nociceptive processes, e.g., fracture-induced hyperalgesia. We aimed to link sensory and sympathetic signaling to fracture healing and fracture-induced hyperalgesia under osteoporotic conditions. Externally stabilized femoral fractures were set 28 days after OVX in wild type (WT), α-CGRP- deficient (α-CGRP -/-), SP-deficient (Tac1-/-) and sympathectomized (SYX) mice. Functional MRI (fMRI) was performed two days before and five and 21 days post fracture, followed by µCT and biomechanical tests. Sympathectomy affected structural bone properties in the fracture callus whereas loss of sensory neurotransmitters affected trabecular structures in contralateral, non-fractured bones. Biomechanical properties were mostly similar in all groups. Both nociceptive and resting-state (RS) fMRI revealed significant baseline differences in functional connectivity (FC) between WT and neurotransmitter-deficient mice. The fracture-induced hyperalgesia modulated central nociception and had robust impact on RS FC in all groups. The changes demonstrated in RS FC in fMRI might potentially be used as a bone traumata-induced biomarker regarding fracture healing under pathophysiological musculoskeletal conditions. The findings are of clinical importance and relevance as they advance our understanding of pain during osteoporotic fracture healing and provide a potential imaging biomarker for fracture-related hyperalgesia and its temporal development. Overall, this may help to reduce the development of chronic pain after fracture thereby improving the treatment of osteoporotic fractures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820334PMC
http://dx.doi.org/10.3390/ijms24010510DOI Listing

Publication Analysis

Top Keywords

fracture healing
16
fracture-induced hyperalgesia
16
osteoporotic fracture
8
healing fracture-induced
8
hyperalgesia osteoporotic
8
osteoporotic fractures
8
chronic pain
8
fracture
7
osteoporotic
5
healing
5

Similar Publications

Purpose: While treatment modalities for Maisonneuve fractures involving the proximal third of the fibula are established, no studies to date have reported outcomes associated with syndesmotic-only fixation of middle third fibular shaft fractures. The purpose of this study was to evaluate outcomes associated with syndesmotic-only fixation in the treatment of Maisonneuve fractures involving the middle third of the fibula.

Methods: A retrospective review was conducted on 257 cases of syndesmotic ankle instability with associated fibular fractures at a level 1 trauma center between 2013 and 2023.

View Article and Find Full Text PDF

Sandblasting and acid etching are common procedures used to treat implant surfaces, enhancing osseointegration and improving clinical success rates. This clinical study aimed to evaluate the long-term outcomes of sandblasted and acid-etched implants. A total of 303 implants were placed in 114 partially and totally edentulous patients using a two-stage surgical technique and an early loading protocol (6-8 weeks).

View Article and Find Full Text PDF

LINC01271 promotes fracture healing via regulating miR-19a-3p/PIK3CA axis.

J Orthop Surg Res

January 2025

Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, Guangdong, China.

Objective: Osteoporosis increases the risk of fragility fractures, impacting patients' lives. This study aimed to investigate whether LINC01271 was involved in the process of fragility fractures and healing, providing a new perspective for its diagnosis and treatment.

Methods: This study included 94 healthy individuals, 82 patients with osteoporosis, and 85 patients with fragility fractures as subjects.

View Article and Find Full Text PDF

Exploring the role of OIP5-AS1 in the mechanisms of delayed fracture healing: functional insights and clinical implications.

J Orthop Surg Res

January 2025

Department of Orthopaedics, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), No. 818, Renminzhong Road, Wuling District, Changde, 415000, Hunan, China.

Objective: Fracture is a common traumatic disease and there is a risk of delayed healing after fracture occurs. This study aimed to explore the regulatory roles and clinical implications of OIP5-AS1 in delayed fracture healing.

Methods: The study included 80 normal fracture healing patients and 80 delayed fracture healing patients.

View Article and Find Full Text PDF

Comparison of bioabsorbable screw versus metallic screw fixation for tibial tubercle fractures in adolescents: a retrospective cohort study.

BMC Musculoskelet Disord

January 2025

Department of Orthopedics, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.

Background: Displaced tibial tubercle (TT) fractures in adolescents are typically treated with open reduction and internal fixation. While metallic screw (MS) fixation provides strong stability, it often results in a high incidence of postoperative screw head protrusion or irritation, leading to additional removal surgery. Bioabsorbable screw (BS) fixation presents an alternative that may avoid these issues, though its stability has not yet been extensively documented in the literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!