Edible films and coatings are a current and future food packaging trend. In the food and envi-ronmental sectors, there is a growing need to understand the role of edible packaging and sus-tainability. Gums are polysaccharides of natural origin that are frequently utilized as thickeners, clarifying agents, gelling agents, emulsifiers, and stabilizers in the food sector. Gums come in a variety of forms, including seed gums, mucilage gums, exudate gums, and so on. As a biodegradable and sustainable alternative to petrochemical-based film and coatings, gums could be a promising option. Natural plant gum-based edible packaging helps to ensure extension of shelf-life of fresh and processed foods while also reducing microbiological alteration and/or oxidation processes. In this review, the possible applications of gum-based polymers and their functional properties in development of edible films and coatings, were comprehensively dis-cussed. In the future, technology for developing natural gum-based edible films and coatings might be applied commercially to improve shelf life and preserve the quality of foods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820387 | PMC |
http://dx.doi.org/10.3390/ijms24010485 | DOI Listing |
Polymers (Basel)
January 2025
Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
Novel ferrite/polyurethane nanocomposites were synthesized using the in situ polymerization method after the addition of different spinel nanoferrite particles (copper, zinc, and copper-zinc) and examined as potential coatings for medical devices and implants in vascular tissue engineering. The influence of the nanoferrite type on the structure and functional characteristics of the polyurethane composites was investigated by FTIR, SWAXS, AFM, TGA, DSC, nanoindentation, swelling behavior, water contact angle, and water absorption measurements. Biocompatibility was evaluated by examining the cytotoxicity and adhesion of human endothelial cells and fibroblasts onto prepared composites and performing a protein adsorption test.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Computer Engineering, Weifang University, Weifang 261061, China.
Polymeric dielectrics have garnered significant interest worldwide due to their excellent comprehensive performance. However, developing polymeric dielectric films with high permittivity () and breakdown strength () and low dielectric loss (tan) presents a huge challenge. In this study, amorphous aluminum oxide (AlO, AO) transition interfaces with nanoscale thickness were constructed between titanium oxide (TiO, TO) nanosheets and polyvinylidene fluoride (PVDF) to manufacture composites (PVDF/TO@AO).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department Food Engineering, Universidad de Córdoba, Montería, Colombia. Electronic address:
Recent studies have focused on the generation of biomaterials from natural sources, highlighting the use of starch from different sources to obtain edible films and coatings. In this study, edible films were developed from sweet potato starch, and their potential use in candy packaging was evaluated. Films were prepared by the casting method, and the effects of sweet potato starch (3 %-5 % w/w), glycerol (0.
View Article and Find Full Text PDFInt J Pharm
January 2025
Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India. Electronic address:
Diabetes is a disorder attributed to impaired production or utilization of insulin and requires rapid precise monitoring of glucose levels. The fabrication of nanotechnology-based non-invasive biosensors for glucose detection holds significant promise for improved diabetes care and point-of-care diagnostics. The study demonstrates a novel molecularly imprinted polymers (ADMIPs) based sensitive biosensor for glucose estimation in saliva using three distinct sensing platforms -cotton swab, paper strip and polymeric film by colorimetric assay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!