A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Construction of a Hierarchical Gene Regulatory Network to Reveal the Drought Tolerance Mechanism of Shanxin Poplar. | LitMetric

Drought stress is a common adverse environment that plants encounter, and many drought-tolerant genes have been characterized. The gene regulatory network (GRN) is important in revealing the drought tolerance mechanism. Here, to investigate the regulatory mechanism of Shanxin poplar ( × ) responding to drought stress, a three-layered GRN was built, and the regulatory relationship between genes in the GRN were predicted from expression correlation using a partial correlation coefficient-based algorithm. The GRN contains 1869 regulatory relationships, and includes 11 and 19 transcription factors (TFs) in the first and second layers, respectively, and 158 structural genes in the bottom layers involved in eight enriched biological processes. ChIP-PCR and qRT-PCR based on transient transformation were performed to validate the reliability of the GRN. About 88.0% of predicted interactions between the first and second layers, and 82.0% of predicted interactions between the second and third layers were correct, suggesting that the GRN is reliable. Six TFs were randomly selected from the top layer for characterizing their function in drought, and all of these TFs can confer drought tolerance. The important biological processes related to drought tolerance were identified, including "response to jasmonic acid", "response to oxidative stress", and "response to osmotic stress". In this GRN, PdbERF3 is predicted to play an important role in drought tolerance. Our data revealed the key regulators, TF-DNA interactions, and the main biological processes involved in adaption of drought stress in Shanxin poplar.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820611PMC
http://dx.doi.org/10.3390/ijms24010384DOI Listing

Publication Analysis

Top Keywords

drought tolerance
20
shanxin poplar
12
drought stress
12
biological processes
12
drought
9
gene regulatory
8
regulatory network
8
tolerance mechanism
8
mechanism shanxin
8
second layers
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!