(‒)-Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea. Thanks to multiple interactions with cell surface receptors, intracellular signaling pathways, and nuclear transcription factors, EGCG possesses a wide variety of anti-inflammatory, antioxidant, antifibrotic, anti-remodelation, and tissue-protective properties which may be useful in the treatment of various diseases, particularly in cancer, and neurological, cardiovascular, respiratory, and metabolic disorders. This article reviews current information on the biological effects of EGCG in the above-mentioned disorders in relation to molecular pathways controlling inflammation, oxidative stress, and cell apoptosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820274PMC
http://dx.doi.org/10.3390/ijms24010340DOI Listing

Publication Analysis

Top Keywords

green tea
8
‒-epigallocatechin-3-gallate egcg
8
relation molecular
8
molecular pathways
8
pathways controlling
8
controlling inflammation
8
inflammation oxidative
8
oxidative stress
8
therapeutic effects
4
effects green
4

Similar Publications

Global retention model based on multisample system parameters for optimising chromatographic fingerprints of medicinal plants.

Anal Chim Acta

February 2025

Department of Analytical Chemistry, Faculty of Chemistry, Universitat de València, C/ Dr. Moliner 50, 46100, Burjassot, Spain. Electronic address:

Background: Developing analytical methods for Traditional Medicine products by liquid chromatography is challenging due to their chemical complexity and the lack of analytical standards for numerous, unidentified constituents. Regulatory agencies recommend chromatographic fingerprint analysis for quality evaluation, relying on peak detection to ensure resolution. Conventional modelling struggles to optimise experimental conditions for such complex samples.

View Article and Find Full Text PDF

Analysis of volatile compounds and vintage discrimination of raw Pu-erh tea based on GC-IMS and GC-MS combined with data fusion.

J Chromatogr A

January 2025

College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China. Electronic address:

Storage duration significantly influences the aroma profile of raw Pu-erh tea. To comprehensively investigate the differences in the volatile compounds across various vintages of raw Pu-erh teas and achieve the rapid classification of tea vintages, volatile compounds of raw Pu-erh tea with different years (2020-2023) were analyzed using a combination of gas chromatography-ion mobility spectrometry (GC-IMS) and gas chromatography-mass spectrometry (GC-MS). The datasets obtained from both techniques were integrated through low-level and mid-level data fusion strategies.

View Article and Find Full Text PDF

Neurodegenerative diseases (NDs) are caused by progressive neuronal death and cognitive decline. Epigallocatechin 3-gallate (EGCG) is a polyphenolic molecule in green tea as a neuroprotective agent. This review evaluates the therapeutic effects of EGCG and explores the molecular mechanisms that show its neuroprotective properties.

View Article and Find Full Text PDF

Aims: To investigate the associations of tea consumption with all-cause and cause-specific mortality among type 2 diabetes mellitus (T2DM) Chinese patients.

Materials And Methods: The present study included 15 718 participants from the Comprehensive Research on the Prevention and Control of Diabetes between 2013 and 2014 in Jiangsu, China. Information on tea consumption (including frequency, amount, and duration) was collected at baseline using interviewer-administered questionnaires.

View Article and Find Full Text PDF

A label-free photoelectrochemical (PEC) sensor for detecting theophylline (TP) was exploited based on electrodes modified with a nanocomposite of polydopamine nanospheres (PDSs) and gold nanoparticles (AuNPs). PDS particles were prepared by oxidative autopolymerization, and their reducibility was utilized in one step to reduce the gold nanoparticles . The AuNPs-PDS/ZnS PEC sensor was constructed by electrochemical deposition and drop coating.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!