AI Article Synopsis

Article Abstract

Alveolar epithelial cells (AECs) play a role in chemically induced acute lung injury (CALI). However, the mechanisms that induce alveolar epithelial type 2 cells (AEC2s) to proliferate, exit the cell cycle, and transdifferentiate into alveolar epithelial type 1 cells (AEC1s) are unclear. Here, we investigated the epithelial cell types and states in a phosgene-induced CALI rat model. Single-cell RNA-sequencing of bronchoalveolar lavage fluid (BALF) samples from phosgene-induced CALI rat models (Gas) and normal controls (NC) was performed. From the NC and Gas BALF samples, 37,245 and 29,853 high-quality cells were extracted, respectively. All cell types and states were identified and divided into 23 clusters; three cell types were identified: macrophages, epithelial cells, and macrophage proliferating cells. From NC and Gas samples, 1315 and 1756 epithelial cells were extracted, respectively, and divided into 11 clusters. The number of AEC1s decreased considerably following phosgene inhalation. A unique SOX9-positive AEC2 cell type that expanded considerably in the CALI state was identified. This progenitor cell type may develop into alveolar cells, indicating its stem cell differentiation potential. We present a single-cell genome-scale transcription map that can help uncover disease-associated cytologic signatures for understanding biological changes and regeneration of lung tissues during CALI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820093PMC
http://dx.doi.org/10.3390/ijms24010277DOI Listing

Publication Analysis

Top Keywords

alveolar epithelial
12
epithelial cells
12
cell types
12
single-cell rna-sequencing
8
cell
8
epithelial cell
8
chemically induced
8
induced acute
8
acute lung
8
lung injury
8

Similar Publications

Pulmonary alveolar proteinosis (PAP) is a rare pulmonary pathology characterized by the accumulation of surfactant within type II alveolar epithelial cells. Whole lung lavage is the standard treatment for pulmonary alveolar proteinosis involving a large volume of fluid is infused into one lung and subsequently retrieved while the other lung is remains ventilated. Fast-tracking a patient undergoing whole lung lavage requires vigilant monitoring of arterial blood gases, fluid status, and respiratory mechanics.

View Article and Find Full Text PDF

Background: Chemical-induced acute lung injury is characterized by impaired epithelial regenerative capacity, leading to acute pulmonary edema. Numerous studies have investigated the therapeutic potential of endogenous stem cells with particular emphasis on alveolar type 2 epithelial (AEC2) cells owing to their involvement in lung cell renewal. Sox9, a transcription factor known for its role in maintaining stem cell properties and guiding cell differentiation, marks a subset of AEC2 cells believed to contribute to epithelial repair.

View Article and Find Full Text PDF

Hydrogel Strain Sensors for Integrating Into Dynamic Organ-on-a-Chip.

Small

January 2025

Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.

Current hydrogel strain sensors have never been integrated into dynamic organ-on-a-chip (OOC) due to the lack of sensitivity in aqueous cell culture systems. To enhance sensing performance, a novel strain sensor is presented in which the MXene layer is coated on the bottom surface of a pre-stretched anti-swelling hydrogel substrate of di-acrylated Pluronic F127 (F127-DA) and chitosan (CS) for isolation from the cell culture on the top surface. The fabricated strain sensors display high sensitivity (gauge factor of 290.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease characterized by repetitive alveolar injuries with excessive deposition of extracellular matrix (ECM) proteins. A crucial need in understanding IPF pathogenesis is identifying cell types associated with histopathological regions, particularly local fibrosis centers known as fibroblast foci. To address this, we integrated published spatial transcriptomics and single-cell RNA sequencing (scRNA-seq) transcriptomics and adopted the Query method and the Overlap method to determine cell type enrichments in histopathological regions.

View Article and Find Full Text PDF

Circ_0114428 knockdown inhibits ROCK2 expression to assuage lipopolysaccharide-induced human pulmonary alveolar epithelial cell injury through miR-574-5p.

J Physiol Sci

January 2025

Department of Critical Care Medicine, The Third People's Hospital of Qingdao, No. 29 Yongping Road, Licang District, 266000, Qingdao, Shandong, China. Electronic address:

Background: Sepsis-induced acute lung injury (ALI) accounts for about 40% of ALI, accompanied by alveolar epithelial injury. The study aimed to reveal the role of circular RNA_0114428 (circ_0114428) in sepsis-induced ALI.

Methods: Human pulmonary alveolar epithelial cells (HPAEpiCs) were treated with lipopolysaccharide (LPS) to mimic a sepsis-induced ALI cell model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!