Mechanosensing in the Physiology and Pathology of the Gastrointestinal Tract.

Int J Mol Sci

Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.

Published: December 2022

Normal gastrointestinal function relies on sensing and transducing mechanical signals into changes in intracellular signaling pathways. Both specialized mechanosensing cells, such as certain enterochromaffin cells and enteric neurons, and non-specialized cells, such as smooth muscle cells, interstitial cells of Cajal, and resident macrophages, participate in physiological and pathological responses to mechanical signals in the gastrointestinal tract. We review the role of mechanosensors in the different cell types of the gastrointestinal tract. Then, we provide several examples of the role of mechanotransduction in normal physiology. These examples highlight the fact that, although these responses to mechanical signals have been known for decades, the mechanosensors involved in these responses to mechanical signals are largely unknown. Finally, we discuss several diseases involving the overstimulation or dysregulation of mechanotransductive pathways. Understanding these pathways and identifying the mechanosensors involved in these diseases may facilitate the identification of new drug targets to effectively treat these diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820522PMC
http://dx.doi.org/10.3390/ijms24010177DOI Listing

Publication Analysis

Top Keywords

mechanical signals
16
gastrointestinal tract
12
responses mechanical
12
mechanosensors involved
8
cells
5
mechanosensing physiology
4
physiology pathology
4
gastrointestinal
4
pathology gastrointestinal
4
tract normal
4

Similar Publications

A Baicalin-Based Functional Polymer in Dynamic Reversible Networks Alleviates Osteoarthritis by Cellular Interactions.

Adv Sci (Weinh)

January 2025

Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong, 510630, China.

Osteoarthritis (OA) is increasingly recognized as a whole-organ disease predominantly affecting the elderly, characterized by typical alterations in subchondral bone and cartilage, along with recurrent synovial inflammation. Despite the availability of various therapeutics and medications, a complete resolution of OA remains elusive. In this study, novel functional hydrogels are developed by integrating natural bioactive molecules for OA treatment.

View Article and Find Full Text PDF

Improved motor imagery skills after repetitive passive somatosensory stimulation: a parallel-group, pre-registered study.

Front Neural Circuits

January 2025

Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan.

Introduction: Motor-imagery-based Brain-Machine Interface (MI-BMI) has been established as an effective treatment for post-stroke hemiplegia. However, the need for long-term intervention can represent a significant burden on patients. Here, we demonstrate that motor imagery (MI) instructions for BMI training, when supplemented with somatosensory stimulation in addition to conventional verbal instructions, can help enhance MI capabilities of healthy participants.

View Article and Find Full Text PDF

Introduction: Positive end-expiratory pressure (PEEP) and prone positioning can improve gas exchange by promoting uniform lung aeration. However, elevated ventilation pressures may increase intracranial pressure (ICP) and disrupt cerebral autoregulation. This study investigated the effects of PEEP on ICP and cerebral autoregulation in a porcine model with healthy lungs and normal ICP, comparing prone and supine positions.

View Article and Find Full Text PDF

Neuropathic pain is a pervasive health concern worldwide, posing significant challenges to both clinicians and neuroscientists. While acute pain serves as a warning signal for potential tissue damage, neuropathic pain represents a chronic pathological condition resulting from injury or disease affecting sensory pathways of the nervous system. Neuropathic pain is characterized by long-lasting ipsilateral hyperalgesia (increased sensitivity to pain), allodynia (pain sensation in response to stimuli that are not normally painful), and spontaneous unprovoked pain.

View Article and Find Full Text PDF

Constructing mechanosensitive signalling pathways de novo in synthetic cells.

Biochem Soc Trans

January 2025

Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K.

Biological mechanotransduction enables cells to sense and respond to mechanical forces in their local environment through changes in cell structure and gene expression, resulting in downstream changes in cell function. However, the complexity of living systems obfuscates the mechanisms of mechanotransduction, and hence the study of these processes in vitro has been critical in characterising the function of existing mechanosensitive membrane proteins. Synthetic cells are biomolecular compartments that aim to mimic the organisation, functionality and behaviours of biological systems, and represent the next step in the development of in vitro cell models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!