The correct phagocytic activity of microglia is a prerequisite for maintaining homeostasis in the brain. In the analysis of mechanisms regulating microglial phagocytosis, we focused on the bromodomain and extraterminal domain (BET) proteins: Brd2, Brd3, and Brd4, the acetylation code readers that control gene expression in cooperation with transcription factors. We used pharmacological (JQ1) and genetic (siRNA) inhibition of BET proteins in murine microglial cell line BV2. Inhibition of BET proteins reduced the phagocytic activity of BV2, as determined by using a fluorescent microspheres-based assay and fluorescently labelled amyloid-beta peptides. Gene silencing experiments demonstrated that all brain-existing BET isoforms control phagocytosis in microglia. From a set of 84 phagocytosis-related genes, we have found the attenuation of the expression of 14: , , , , , , , , , , , , , upon BET inhibition. Further analysis of the mRNA level of other phagocytosis-related genes which were involved in the pathomechanism of Alzheimer's disease demonstrated that JQ1 significantly reduced the expression of , , and . Our results indicate the important role of BET proteins in controlling microglial phagocytosis; therefore, targeting BET may be the efficient method of modulating microglial activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820364 | PMC |
http://dx.doi.org/10.3390/ijms24010013 | DOI Listing |
Bioorg Chem
January 2025
School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China. Electronic address:
Both type 1 and type 2 diabetes can lead to diabetic nephropathy (DN), a serious microvascular complication. Bromodomain 4 (BRD4), a member of the BET protein family, has been linked to various diseases, including cancer, inflammation, and fibrosis, and may be involved in the development of diabetes and its complications. In this study, we first explored the role and mechanism of BRD4 in DN.
View Article and Find Full Text PDFOral Oncol
January 2025
Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou District, Chongqing 404100, China; Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Wanzhou District, Chongqing 404100, China; School of Medicine Chongqing University, Chongqing University, Shapingba District, Chongqing 400030, China. Electronic address:
NUT carcinoma is a rare and highly aggressive malignancy, predominantly affecting adolescents and young adults. This tumor demonstrates rapid progression, resistance to conventional anti-cancer treatments, and an extremely poor prognosis. Currently, research on NUT carcinoma is limited, and effective treatment options remain scarce.
View Article and Find Full Text PDFComp Med
December 2024
1Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York.
Chlamydia muridarum (Cm) has reemerged as a moderately prevalent infectious agent in research mouse colonies. Despite its experimental use, few studies evaluate Cm's effects on immunocompetent mice following its natural route of infection. A Cm field isolate was administered (orogastric gavage) to 8-wk-old female BALB/cJ (C) mice.
View Article and Find Full Text PDFBMC Cancer
January 2025
Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan.
Background: This study aimed to analyze the functional role of Brd4 in colorectal cancer (CRC) organoids. Brd4 was identified as a CRC-related gene by our previous Sleeping Beauty mutagenesis transposon screening in mice. Brd4 is a transcriptional regulator that recognizes acetylated histones and is known to be involved in inflammatory responses.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
Simultaneous inhibition of the bromodomain and extra-terminal domain and Aurora kinases is a promising anticancer therapeutic strategy. Based on our previous study on BET-kinase dual inhibitors, we employed the molecular docking approach to design novel dual BET-Aurora kinase A inhibitors. Through several rounds of optimization and with the guidance of the solved cocrystal structure of BRD4 bound to inhibitor , we finally obtained a series of highly potent dual BET-Aurora kinase A inhibitors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!