Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Apricot powder was developed through spray drying using gum arabic as an encapsulating material at a concentration of 19%. Inlet air temperature, feed total soluble solids (TSS), feed flow rate, and atomization speed were 190 °C, 23.0 °C, 300.05 mL/h, and 17,433 rpm, respectively. This study was therefore conducted to investigate the influence of anticaking agents (tricalcium phosphate and silicon dioxide) and storage conditions (ambient and accelerated) on physicochemical, micrometric, and thermal characteristics of spray-dried apricot powder (SDAP) packaged in aluminum laminates. Both tricalcium phosphate (TCP) and silicon dioxide (SiO2) improved the shelf life and quality of SDAP, with TCP being more effective, since a lower increase in water activity (aw), moisture content, degree of caking, hygroscopicity, and rehydration time was observed in TCP-treated samples followed by SiO2-treated samples than the control. Furthermore, flowability, glass transition temperature (Tg), and sticky-point temperature (Ts) of SDAP tended to decrease in a significant manner (p < 0.05) under both storage conditions. However, the rate of decrease was higher during accelerated storage. The water activity of treated samples under ambient conditions did not exceed 0.60 and had a total plate count within the permissible range of 40,000 CFU/g, indicating shelf stability of the powder. The predicted shelf life of powder obtained from the Guggenheim−Anderson−de Boer (GAB) model and experimental values were very similar, with TCP-treated samples having a predicted shelf life of 157 days and 77 days under ambient and accelerated storage conditions, respectively. However, the respective experimental shelf life under the same conditions was 150 and 75 days, respectively. Similarly, the predicted shelf life of SiO2-treated samples under ambient and accelerated storage was 137 and 39 days, respectively, whereas the experimental values were 148 and 47 days, respectively. In conclusion, TCP proved more effective than SiO2 at preserving shelf life by preventing moisture ingress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818363 | PMC |
http://dx.doi.org/10.3390/foods12010171 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!