A sustainable valorization process for puree processing from processed carrot discards (PDCs) was proposed by using multiple-pass ultrasonication with mechanical homogenization (MPUMH), optimized at 9 min ultrasonication followed by mechanical homogenization for 1 min, subjected to three passes. Techno-economic analysis of the puree processing plant was studied for two process models using SuperPro Designer for a plant with a capacity of 17.4 MT/day, operational for 26 weeks, with a 20-year lifetime. The two scenarios were (i) base case (PDCs processed without peels and crowns) and (ii) case 2 (PDCs and carrots (50:50, ) processed with peels and crowns). Both scenarios were economically feasible with an internal rate of return (IRR) and return on investment (ROI) at 24.71% and 31.04% (base case) and 86.11% and 119.87% (case 2), respectively. Case 2 had a higher total capital investment (Can$13.7 million) but a lower annual operating cost (Can$8.9 million), resulting in greater revenue generation (Can$29.7 million), thus offering a higher ROI. Sensitivity analysis related to the number of passes on puree quality and price is suggested to lower the capital investment. For the base case, a lower ROI was due to the high labor cost incurred for manual peeling of PDCs, indicating the critical need for developing a commercial peeler equipped to cut labor costs and increase profitability. The study casts insights into the techno-economic performance of a sustainable process for the valorization of PDCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818328PMC
http://dx.doi.org/10.3390/foods12010157DOI Listing

Publication Analysis

Top Keywords

ultrasonication mechanical
12
mechanical homogenization
12
base case
12
techno-economic analysis
8
multiple-pass ultrasonication
8
homogenization mpumh
8
processing processed
8
processed carrot
8
carrot discards
8
puree processing
8

Similar Publications

Exploring new ecological and simultaneous processes to modify wood fibers (WF) by-products is a required pathway toward circular economy and sustainability. Thus, plasma-activated water (PAW) and ultrasound (U) were employed as alternative methods to modify WF in a continuous process. Such treatments promoted the etching and cavities on the WF surface that destabilized the hydrogen bonds of the hemicellulose and lignin molecules, increasing the cellulose fraction.

View Article and Find Full Text PDF

Shear Wave Elastography (SWE) is an imaging technique that detects shear waves generated by tissue excited by Acoustic Radiation Force (ARF), and characterizes the mechanical properties of soft tissue by analyzing the propagation velocity of shear wave. ARF induces a change in energy density through the nonlinear propagation of ultrasound waves, which drives the tissue to generate shear waves. However, the amplitude of shear waves generated by ARF is weak, and the shear waves are strongly attenuated in vivo.

View Article and Find Full Text PDF

Immunogenic cell death (ICD) offers a promising avenue for the treatment of triple-negative breast cancer (TNBC). However, optimizing immune responses remains a formidable challenge. This study presents the design of RBCm@Pt-CoNi layered double hydroxide (RmPLH), an innovative sonosensitizer for sonodynamic therapy (SDT), aimed at enhancing the efficacy of programmed cell death protein 1 (PD-1) inhibitors by inducing robust ICD responses.

View Article and Find Full Text PDF

The Role of Torsion on the Force-Coupled Reactivity of a Fluorenyl Naphthopyran Mechanophore.

J Am Chem Soc

January 2025

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

The unique reactivity of molecules under force commands an understanding of structure-mechanochemical activity relationships. While conceptual frameworks for understanding force transduction in many systems are established, systematic investigations into force-coupled molecular torsions are limited. Here, we describe a novel fluorenyl naphthopyran mechanophore for which mechanical force is uniquely coupled to the torsional motions associated with the overall chemical transformation as a result of the conformational rigidity imposed by the fluorene group.

View Article and Find Full Text PDF

Objectives: To compare thoracolumbar fascia (TLF) shear strain between individuals with and without nonspecific low back pain (NSLBP), investigate its correlation with symptoms, and assess a standardized massage technique's impact on TLF shear strain.

Methods: Participants were prospectively enrolled between February 2021 and June 2022. Pre- and post-intervention TLF ultrasound and pain/disability questionnaires were conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!