Selenium Nanoparticles Synergistically Stabilized by Starch Microgel and EGCG: Synthesis, Characterization, and Bioactivity.

Foods

National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.

Published: December 2022

Selenium (Se) is a chemical element essential to human health because of its bioactive properties, including antioxidative, anticancer, and immunomodulating activities. Despite the high therapeutic potential of Se, its intrinsic properties of poor stability, a narrow therapeutic window, and low bioavailability and bioactivity have limited its clinical applications. Selenium nanoparticles (SeNPs) exhibit lower toxicity and higher bioactivity than other Se forms. Herein, we report a green method for the preparation of monodisperse SeNPs with starch microgel (SM) and epigallocatechin gallate (EGCG) through Se-O bonds and polysaccharide-polyphenol interactions (namely, SM-EGCG-SeNPs). SM-EGCG-SeNPs showed higher stability, bioactivities, and cytotoxicity than SeNPs and SM-SeNPs at the equivalent dose. SM-EGCG-SeNPs induced the apoptosis of cancer cells via the activation of several caspases and reactive oxygen species overproduction. This work proposes a facile method for the design and potentiation of structure-bioactive SeNPs via polysaccharide-polyphenol interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818717PMC
http://dx.doi.org/10.3390/foods12010013DOI Listing

Publication Analysis

Top Keywords

selenium nanoparticles
8
starch microgel
8
polysaccharide-polyphenol interactions
8
nanoparticles synergistically
4
synergistically stabilized
4
stabilized starch
4
microgel egcg
4
egcg synthesis
4
synthesis characterization
4
characterization bioactivity
4

Similar Publications

Extracts of medicinal seeds can be used to synthesize nanoparticles (NPs) in more environmentally friendly ways than physical or chemical ways. For the first time, aqueous extract from unexploited grape seeds was used in this study to create Se/ZnO NPS utilizing a green technique, and their antimicrobial activity, cytotoxicity, antioxidant activities, and plant bio stimulant properties of the economic Vicia faba L. plant were evaluated.

View Article and Find Full Text PDF

Cancers still globally endanger millions of people yearly; the incidences/mortalities of colorectal cancers are particularly increasing. The natural nanoparticles (NPs) and marine biopolymers were anticipated to provide effectual safe significances for managing cancers. The transformation of curcumin to nano-curcumin (NCur) was conducted with gum Arabic.

View Article and Find Full Text PDF

Liver cancer is globally the most frequent fatal malignancy, and its identification is critical for making clinical decisions about treatment options. Pathological diagnostics and contemporary imaging technologies provide insufficient information for tumor identification. Hydrogen peroxide (HO), an emerging biomarker is a powerful oxidant found in the tumor microenvironment, and stimulates the invasion, proliferation, and metastasis of liver cancer cells.

View Article and Find Full Text PDF

Response mechanism of major secondary metabolites of to selenium nanoparticles.

Front Plant Sci

December 2024

Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China.

Selenium nanoparticles (SeNPs) can be absorbed by plants, thereby affecting plant physiological activity, regulating gene expression, and altering metabolite content. However, the molecular mechanisms by which exogenous selenium affects coll.et Hemsl plant secondary metabolites remain unclear.

View Article and Find Full Text PDF

This study explores the potential antagonistic effects of selenium-doped zinc oxide nanoparticles (Se-ZnO NPs), synthesized through a sustainable approach, on maize charcoal rot induced by the fungus Macrophomina phaseolina. Se-ZnO-NPs were prepared using the rhizobium extract of Curcuma longa and characterized for their physicochemical properties. Characterization included various in vitro parameters such as FTIR, ICP-MS, particle size, PDI, and zeta potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!