COVID-19 Public Opinion: A Twitter Healthcare Data Processing Using Machine Learning Methodologies.

Int J Environ Res Public Health

Bellurbis Technologies Private Limited, Indore 452001, India.

Published: December 2022

AI Article Synopsis

Article Abstract

The COVID-19 pandemic has shattered the whole world, and due to this, millions of people have posted their sentiments toward the pandemic on different social media platforms. This resulted in a huge information flow on social media and attracted many research studies aimed at extracting useful information to understand the sentiments. This paper analyses data imported from the Twitter API for the healthcare sector, emphasizing sub-domains, such as vaccines, post-COVID-19 health issues and healthcare service providers. The main objective of this research is to analyze machine learning models for classifying the sentiments of people and analyzing the direction of polarity by considering the views of the majority of people. The inferences drawn from this analysis may be useful for concerned authorities as they work to make appropriate policy decisions and strategic decisions. Various machine learning models were developed to extract the actual emotions, and results show that the support vector machine model outperforms with an average accuracy of 82.67% compared with the logistic regression, random forest, multinomial naïve Bayes and long short-term memory models, which present 78%, 77%, 68.67% and 75% accuracy, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9819913PMC
http://dx.doi.org/10.3390/ijerph20010432DOI Listing

Publication Analysis

Top Keywords

machine learning
12
social media
8
learning models
8
covid-19 public
4
public opinion
4
opinion twitter
4
twitter healthcare
4
healthcare data
4
data processing
4
machine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!