A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Examining Vaccine Sentiment on Twitter and Local Vaccine Deployment during the COVID-19 Pandemic. | LitMetric

AI Article Synopsis

  • Understanding local attitudes towards vaccines is crucial for effective vaccination campaigns, and social media can reveal these sentiments during outbreaks.
  • This study focused on San Diego, using Twitter data from May 2020 to March 2021 to analyze public sentiment about COVID-19 vaccines through sentiment analysis.
  • Findings indicated a spike in positive sentiment in November and December 2020, aligning with the announcement of local vaccine events, underscoring the importance of real-time social media monitoring for guiding vaccination efforts.

Article Abstract

Understanding local public attitudes toward receiving vaccines is vital to successful vaccine campaigns. Social media platforms may help uncover vaccine sentiments during infectious disease outbreaks at the local level, and whether offline local events support vaccine-promotion efforts. Communication Infrastructure Theory (CIT) served as a guiding framework for this case study of the San Diego region examining local public sentiment toward vaccines expressed on Twitter during the COVID-19 pandemic. We performed a sentiment analysis (including positivity and subjectivity) of 187,349 tweets gathered from May 2020 to March 2021, and examined how sentiment corresponded with local vaccine deployment. The months of November and December (52.9%) 2020 saw a majority of tweets expressing positive sentiment and coincided with announcements of offline local events signaling San Diego's imminent deployment of COVID-19 vaccines. Across all months, tweets remained mostly objective (never falling below 63%). In terms of CIT, considering multiple levels of the Story Telling Network in online spaces, and examining sentiment about vaccines on Twitter may help scholars to explore the Communication Action Context, as well as cultivate positive community attitudes to improve the Field of Health Action regarding vaccines. Real-time analysis of local tweets during development and deployment of new vaccines may help monitor local public responses and guide promotion of immunizations in communities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9819151PMC
http://dx.doi.org/10.3390/ijerph20010354DOI Listing

Publication Analysis

Top Keywords

local public
12
local
9
local vaccine
8
vaccine deployment
8
deployment covid-19
8
covid-19 pandemic
8
offline local
8
local events
8
sentiment vaccines
8
sentiment
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: