This study aimed at investigating the distribution of heavy metals (HMs: Zn, Pb, Cd, Ni, Cr, and Cu) in the bottom sediments of 28 reservoirs covered area of Poland. The paper evaluates the pollution of sediments with HMs and their potential toxic effects on aquatic organisms and human health on the basis of results provided by the Chief Inspectorate of Environmental Protection in Poland. The average concentrations of HMs in the bottom sediments of the reservoirs were as follows: Cd < Ni < Cr < Cu < Pb < Zn. (0.187, 7.30, 7.74, 10.62, 12.47, and 52.67 mg∙dm−3). The pollution load index values were from 0.05 to 2.45. They indicate contamination of the bottom sediments in seven reservoirs. The contamination-factor values suggest pollution with individual HMs in 19 reservoirs, primarily Cr, Ni, Cu, and Pb. The analysis showed that only two reservoirs had the potential for toxic effects on aquatic organisms due to high concentrations of Cd and Pb. The hazard index values for all the analyzed HMs were less than one. Therefore, there was no non-carcinogenic risk for dredging workers. The reservoirs were divided into two groups in terms of composition and concentration values. Reservoirs with higher concentrations of HMs in bottom sediments are dispersed, suggesting local pollution sources. For the second group of reservoirs, HMs’ concentrations may be determined by regional pollution sources. The analysis showed that Pb, Zn, and Cd concentrations are higher in older reservoirs and those with higher proportions of artificial areas in their catchments. Concentrations of Ni, Cu, and Cr are higher in reservoirs in south Poland and those with higher Schindler’s ratios.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9819632 | PMC |
http://dx.doi.org/10.3390/ijerph20010324 | DOI Listing |
Sci Adv
January 2025
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.
Symmetrical wave ripples identified with NASA's Curiosity rover in ancient lake deposits at Gale crater provide a key paleoclimate constraint for early Mars: At the time of ripple formation, climate conditions must have supported ice-free liquid water on the surface of Mars. These features are the most definitive examples of wave ripples on another planet. The ripples occur in two stratigraphic intervals within the orbitally defined Layered Sulfate Unit: a thin but laterally extensive unit at the base of the Amapari member of the Mirador formation, and a sandstone lens within the Contigo member of the Mirador formation.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Operational Oceanography, Maritime Institute, Gdynia Maritime University, ul. Roberta de Plelo 20, 80-848 Gdańsk, Poland.
The aim of this study is to verify the possibility of detecting oil in the bottom sediment using a fibre optic system. The presence of oil is assessed on excitation-emission spectra obtained from spectral fluorescence signals of the sediment sample. A factory spectrofluorometer coupled with an experimental fibre optic measurement system was used.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Department of Ocean Sciences, Inha University, Incheon 22212, Republic of Korea. Electronic address:
Mar Pollut Bull
January 2025
Ecology & Environment Research Group, Centre for Water Resources Development and Management, Kozhikode, India.
This study evaluates the influence of water current and suspended sediment concentration (SSC) on microplastic distribution in various mixing regimes of the Ashtamudi estuary, India. Microplastic abundance ranged from 3.2 to 53 items/L, with highest concentrations observed near the confluence of the river and the sea.
View Article and Find Full Text PDFSci Rep
January 2025
Geophysics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
The Red Sea remains a largely under-explored basin, with the Northern Egyptian Red Sea requiring further investigation due to limited borehole data, sparse case studies, and poor seismic quality. A petroleum system, regional structural cross-section, and geological block diagrams integrating onshore fieldwork from Gebel Duwi and offshore subsurface geology were utilized to assess the hydrocarbon potential of the Northern Egyptian Red Sea (NERS). The findings highlight that pre- and syn-rift organic-rich source units in the NERS could generate oil and gas, similar to the capped reservoirs of the Southern Gulf of Suez.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!