The organic solid waste of municipal origin stands as one of the residual streams of greatest concern: the great amounts continuously produced over time as well as its biochemical and physical characteristics require its proper handling via biological processes, pursuing the recovery of material and/or the generation of energy. At the European level, most of the industrial plants treating the organic fraction of municipal solid waste (OFMSW) rely on composting, which is a well-established and reliable process that is easy to operate in different socio-economic contexts. Nevertheless, when regarded in a life cycle perspective as well as in the view of the principles of circular economy underlying waste management, several issues (e.g., the presence of toxic substances in compost) can be recognized as technical challenges, requiring further studies to identify possible sustainable solutions. This work aims at discussing these challenges and figuring out the state of the art of composting in a circular perspective. Firstly, the main mentioned issues affecting compost quality and process sustainability are briefly reviewed. Next, to promote the effective use of composting in light of the circular economy principles, research experiences are critically presented to highlight the current technical challenges concerning the environmental and health impact reduction and possible scientific perspectives to overcome issues affecting the compost quality. Based on the critical analysis of reviewed studies, it emerged that further research should be aimed at unveiling the hazard potential of emerging contaminants as well as to address the understanding of the mechanisms underlying their potential removal during composting. Moreover, the adoption of a multidisciplinary perspective in the design of research studies may play a key role towards the definition of cost-effective and environmentally friendly strategies to overcome the technical issues affecting the process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9819849 | PMC |
http://dx.doi.org/10.3390/ijerph20010312 | DOI Listing |
Environ Geochem Health
January 2025
School of Chemical & Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China.
As a typical ecologically fragile area, the Wudong Coal Mine region in Xinjiang generates large accumulations of coal gangue each year, which, in the alkaline soil environment, can easily lead to significant leaching and accumulation of As. This study developed a stabilizer (CFD) using cement, fly ash, and desulfurized gypsum to modify in-situ soil in the Xinjiang mining area, resulting in a modified solidified soil with excellent geotechnical performance and As stabilization capability. The study results showed that when CFD content exceeded 14.
View Article and Find Full Text PDFToxics
December 2024
School of Life Sciences, South China Normal University, Guangzhou 510631, China.
Illegal solid waste dumping is a significant factor contributing to environmental damage. In this study, 16S rRNA gene sequencing technology was used for the identification and assessment of environmental damage in an illegal dumping area in China, with the aim of confirming environmental damage through analyzing changes in the soil bacterial communities across slag, sewage sludge, and non-contaminated areas. The results indicate that the diversity of soil bacteria decreases with an increase in the degree of pollution.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
DVGW-Research Center at the Engler-Bunte-Institute, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany.
Short-chain fatty acids (SCFAs) are valuable metabolic intermediates that are produced during dark fermentation of sludge, which, when capitalized on, can be used as chemical precursors for biotechnological applications. However, high concentrations of solids with SCFAs in hydrolyzed sludge can be highly detrimental to downstream recovery processes. This pilot-scale study addresses this limitation and explores the recovery of SCFAs from primary sludge into a particle-free permeate through a combination of chamber filter-press (material: polyester; mesh size: 100 µm) and cross-flow microfiltration (material: α-AlO; pore size: 0.
View Article and Find Full Text PDFGels
January 2025
Department of Materials, "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia.
The formation of an aluminosilicate gel structure made of alkali-activated materials (AAMs) was conducted through an alkali-activation reaction of the solid precursors (fly ash, metakaolin, and wood ash). Fly and wood ash are by-products of the burning process of coal and wood, respectively. Alkali-activated materials of aluminosilicate origin, made from the different ashes, fly and wood, are very attractive research targets and can be applied in various technological fields due to their thermal stability, resistance to thermal shock, high porosity, high sustainability, and finally, low energy loss during production.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
In this study, we describe the development of hydrogel formulations composed of micelles loading two natural antioxidants-resveratrol and rutin-and the evaluation of the effect of a by-product on the rheological and textural properties of the developed semi-solids. This approach aims to associate the advantages of hydrogels for topical administration of drugs and of lipid micelles that mimic skin composition for the delivery of poorly water-soluble compounds in combination therapy. Biomimetic micelles composed of L-α-phosphatidylcholine loaded with two distinct polyphenols (one non-flavonoid and one flavonoid) were produced using hot shear homogenisation followed by the ultrasonication method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!