The circadian rhythm regulates biological processes that occur within 24 h in living organisms. It plays a fundamental role in maintaining biological functions and responds to several inputs, including food intake, light/dark cycle, sleep/wake cycle, and physical activity. The circadian timing system comprises a central clock located in the suprachiasmatic nucleus (SCN) and tissue-specific clocks in peripheral tissues. Several studies show that the desynchronization of central and peripheral clocks is associated with an increased incidence of insulin resistance (IR) and related diseases. In this review, we discuss the current knowledge of molecular and cellular mechanisms underlying the impact of circadian clock dysregulation on insulin action. We focus our attention on two possible mediators of this interaction: the phosphatases belonging to the pleckstrin homology leucine-rich repeat protein phosphatase family (PHLPP) family and the deacetylase Sirtuin1. We believe that literature data, herein summarized, suggest that a thorough change of life habits, with the return to synchronized food intake, physical activity, and rest, would doubtless halt the vicious cycle linking IR to dysregulated circadian rhythms. However, since such a comprehensive change may be incompatible with the demand of modern society, clarifying the pathways involved may, nonetheless, contribute to the identification of therapeutic targets that may be exploited to cure or prevent IR-related diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9819930 | PMC |
http://dx.doi.org/10.3390/ijerph20010029 | DOI Listing |
Zhongguo Zhong Yao Za Zhi
December 2024
Jiangxi Province Key Laboratory of Traditional Chinese Medicine Etiopathogenisis & Research Center for Differentiation and Development of Traditional Chinese Medicine Basic Theory, Jiangxi University of Chinese Medicine Nanchang 330004,China.
This study aims to investigate the mechanism of berberine in regulating the metabolism network via clock-controlled genes represented by brain and muscle arnt-like 1(BMAL1) to ameliorate insulin resistance(IR) of hepatocytes in vitro. The HepG2 cell model of dexamethasone-induced IR(IR-HepG2) was established and treated with 5, 10, and 20 μmol·L~(-1) berberine, respectively, for 24 h. The glucose oxidase method and cell counting kit-8(CCK-8) assay were employed to measure extracellular glucose concentration and cell viability, respectively.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China.
Liquid crystal monomers (LCMs) of different chemical structures were widely detected in various environmental matrices. However, their health risk evaluation is lacking. Herein, three representative LCMs were selected from 74 LCM candidates upon literature review and acute cytotoxicity evaluation, then were exposed to the three LCMs for 42 days at doses of 0.
View Article and Find Full Text PDFHortic Res
January 2025
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
The circadian clock mediates metabolic functions of plants and rhythmically shapes structure and function of microbial communities in the rhizosphere. However, it is unclear how the circadian rhythm of plant hosts regulates changes in rhizosphere bacterial and fungal communities and nutrient cycles. In the present study, we measured diel changes in the rhizosphere of bacterial and fungal communities, and in nitrogen (N) and phosphorus (P) cycling in 20-year-old tea plantations.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
Aim: Exposure to light at night and meal time misaligned with the light/dark (LD) cycle-typical features of daily life in modern 24/7 society-are associated with negative effects on health. To understand the mechanism, we developed a novel protocol of complex chronodisruption (CD) in which we exposed female rats to four weekly cycles consisting of 5-day intervals of constant light and 2-day intervals of food access restricted to the light phase of the 12:12 LD cycle.
Methods: We examined the effects of CD on behavior, estrous cycle, sleep patterns, glucose homeostasis and profiles of clock- and metabolism-related gene expression (using RT qPCR) and liver metabolome and lipidome (using untargeted metabolomic and lipidomic profiling).
Biomed J
January 2025
Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan. Electronic address:
Background: Obesity and circadian rhythm disruption are significant global health concerns, contributing to an increased risk of metabolic disorders. Both adipose tissue and circadian rhythms play critical roles in maintaining energy homeostasis, and their dysfunction is closely linked to obesity. This study aimed to assess the effects of chronic low-dose SR9009, a REV-ERB ligand, on circadian disruption induced by constant light exposure in mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!