Although the free water content within the perilesional T2 hyperintense region should differ between glioblastomas (GBM) and brain metastases based on histological differences, the application of classical MR diffusion models has led to inconsistent results regarding the differentiation between these two entities. Whereas diffusion tensor imaging (DTI) considers the voxel as a single compartment, multicompartment approaches such as neurite orientation dispersion and density imaging (NODDI) or the recently introduced diffusion microstructure imaging (DMI) allow for the calculation of the relative proportions of intra- and extra-axonal and also free water compartments in brain tissue. We investigate the potential of water-sensitive DTI, NODDI and DMI metrics to detect differences in free water content of the perilesional T2 hyperintense area between histopathologically confirmed GBM and brain metastases. Respective diffusion metrics most susceptible to alterations in the free water content (MD, V-ISO, V-CSF) were extracted from T2 hyperintense perilesional areas, normalized and compared in 24 patients with GBM and 25 with brain metastases. DTI MD was significantly increased in metastases (p = 0.006) compared to GBM, which was corroborated by an increased DMI V-CSF (p = 0.001), while the NODDI-derived ISO-VF showed only trend level increase in metastases not reaching significance (p = 0.060). In conclusion, diffusion MRI metrics are able to detect subtle differences in the free water content of perilesional T2 hyperintense areas in GBM and metastases, whereas DMI seems to be superior to DTI and NODDI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9817519PMC
http://dx.doi.org/10.3390/cancers15010129DOI Listing

Publication Analysis

Top Keywords

free water
20
brain metastases
16
water content
16
content perilesional
12
perilesional hyperintense
12
gbm brain
12
diffusion tensor
8
tensor imaging
8
neurite orientation
8
orientation dispersion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!