Patients with advanced endometrial cancer (EC) show poor outcomes. Thus, the development of new therapeutic approaches to prevent metastasis development in high-risk patients is an unmet need. CXCR4 is overexpressed in EC tumor tissue, epitomizing an unexploited therapeutic target for this malignancy. The in vitro antitumor activity of two CXCR4-targeted nanoparticles, including either the (T22-DITOX-H6) or (T22-PE24-H6) toxin, was evaluated using viability assays. Apoptotic activation was assessed by DAPI and caspase-3 and PARP cleavage in cell blocks. Both nanotoxins were repeatedly administrated to a subcutaneous EC mouse model, whereas T22-DITOX-H6 was also used in a highly metastatic EC orthotopic model. Tumor burden was assessed through bioluminescence, while metastatic foci and toxicity were studied using histological or immunohistochemical analysis. We found that both nanotoxins exerted a potent antitumor effect both in vitro and in vivo via apoptosis and extended the survival of nanotoxin-treated mice without inducing any off-target toxicity. Repeated T22-DITOX-H6 administration in the metastatic model induced a dramatic reduction in tumor burden while significantly blocking peritoneal, lung and liver metastasis without systemic toxicity. Both nanotoxins, but especially T22-DITOX-H6, represent a promising therapeutic alternative for EC patients that have a dismal prognosis and lack effective therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818013PMC
http://dx.doi.org/10.3390/cancers15010085DOI Listing

Publication Analysis

Top Keywords

activity cxcr4-targeted
8
endometrial cancer
8
tumor burden
8
potent anticancer
4
anticancer activity
4
cxcr4-targeted nanostructured
4
nanostructured toxins
4
toxins aggressive
4
aggressive endometrial
4
cancer models
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!