Multiple Roles of PLK1 in Mitosis and Meiosis.

Cells

Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic.

Published: January 2023

AI Article Synopsis

  • Cells use various proteins to regulate their division, ensuring the process goes smoothly with checkpoints in place.
  • Polo-like kinase 1 (PLK1) is a crucial protein that influences important stages in the cell cycle, like nuclear envelope breakdown and chromosome separation.
  • PLK1 also plays a role in regulating the translation of specific mRNAs by inhibiting a repressor, but more research is needed to fully understand its function in meiosis.

Article Abstract

Cells are equipped with a diverse network of signaling and regulatory proteins that function as cell cycle regulators and checkpoint proteins to ensure the proper progression of cell division. A key regulator of cell division is polo-like kinase 1 (PLK1), a member of the serine/threonine kinase family that plays an important role in regulating the mitotic and meiotic cell cycle. The phosphorylation of specific substrates mediated by PLK1 controls nuclear envelope breakdown (NEBD), centrosome maturation, proper spindle assembly, chromosome segregation, and cytokinesis. In mammalian oogenesis, PLK1 is essential for resuming meiosis before ovulation and for establishing the meiotic spindle. Among other potential roles, PLK1 regulates the localized translation of spindle-enriched mRNAs by phosphorylating and thereby inhibiting the translational repressor 4E-BP1, a downstream target of the mTOR (mammalian target of rapamycin) pathway. In this review, we summarize the functions of PLK1 in mitosis, meiosis, and cytokinesis and focus on the role of PLK1 in regulating mRNA translation. However, knowledge of the role of PLK1 in the regulation of meiosis remains limited.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818836PMC
http://dx.doi.org/10.3390/cells12010187DOI Listing

Publication Analysis

Top Keywords

plk1
8
roles plk1
8
plk1 mitosis
8
mitosis meiosis
8
cell cycle
8
cell division
8
role plk1
8
multiple roles
4
meiosis
4
meiosis cells
4

Similar Publications

Nowadays, chemotherapy and immunotherapy remain the major treatment strategies for Triple-Negative Breast Cancer (TNBC). Identifying biomarkers to pre-select and subclassify TNBC patients with distinct chemotherapy responses is essential. In the current study, we performed an unbiased Reverse Phase Protein Array (RPPA) on TNBC cells treated with chemotherapy compounds and found a leading significant increase of phosphor-AURKA/B/C, AURKA, AURKB, and PLK1, which fall into the mitotic kinase group.

View Article and Find Full Text PDF

Onvansertib and Navitoclax Combination as a New Therapeutic Option for Mucinous Ovarian Carcinoma.

Int J Mol Sci

January 2025

Laboratory of Gynecological Preclinical Oncology, Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy.

Mucinous epithelial ovarian cancer (mEOC) is a rare subtype of epithelial ovarian cancer, characterized by poor responses to standard platinum-based chemotherapy. Polo-like kinase 1 (PLK1) is a key regulator of mitosis and cell cycle progression and its inhibition has been recently identified as a target in mEOC. In this study, we aimed to identify further therapeutic targets in mEOC using a CRISPR/Cas9 library targeting 3015 genes, with and without treatment with onvansertib, a PLK1 inhibitor.

View Article and Find Full Text PDF

Necroptosis-Related Gene Signature Predicts Prognosis in Patients with Advanced Ovarian Cancer.

Cancers (Basel)

January 2025

Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany.

This study aimed to construct a risk score (RS) based on necroptosis-associated genes to predict the prognosis of patients with advanced epithelial ovarian cancer (EOC). EOC data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) series 140082 (GSE140082) were used. Based on known necroptosis-associated genes, clustering was performed to identify molecular subtypes of EOC.

View Article and Find Full Text PDF

: Early-onset colorectal cancer (EOCRC) is more frequently characterized by poorly differentiated, aggressive tumors, often diagnosed at advanced stages, and associated with worse prognoses. Despite these differences, current treatment guidelines do not distinguish between EOCRC and late-onset colorectal cancer (LOCRC). Elevated expression of polo-like kinase 1 (PLK-1) has been linked to advanced disease stages and poorer treatment outcomes, including resistance to both chemotherapy and radiotherapy.

View Article and Find Full Text PDF

Tumor Microenvironment-Responsive Lipid Nanoparticle for Blocking Mitosis and Reducing Drug Resistance in NSCLC.

J Med Chem

January 2025

State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.

Blocking mitosis is a promising strategy to induce tumor cell death. However, AMPK- and PFKFB3-mediated glycolysis can maintain ATP supply and help tumor cells overcome antimitotic drugs. Inhibiting glycolysis provides an opportunity to decrease the resistance of tumor cells to antimitotic drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!