A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3051
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3053

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3053
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

IoT-Based Medical Image Monitoring System Using HL7 in a Hospital Database. | LitMetric

In recent years, the healthcare system, along with the technology that surrounds it, has become a sector in much need of development. It has already improved in a wide range of areas thanks to significant and continuous research into the practical implications of biomedical and telemedicine studies. To ensure the continuing technological improvement of hospitals, physicians now also must properly maintain and manage large volumes of patient data. Transferring large amounts of data such as images to IoT servers based on machine-to-machine communication is difficult and time consuming over MQTT and MLLP protocols, and since IoT brokers only handle a limited number of bytes of data, such protocols can only transfer patient information and other text data. It is more difficult to handle the monitoring of ultrasound, MRI, or CT image data via IoT. To address this problem, this study proposes a model in which the system displays images as well as patient data on an IoT dashboard. A Raspberry Pi processes HL7 messages received from medical devices like an ultrasound machine (ULSM) and extracts only the image data for transfer to an FTP server. The Raspberry Pi 3 (RSPI3) forwards the patient information along with a unique encrypted image data link from the FTP server to the IoT server. We have implemented an authentic and NS3-based simulation environment to monitor real-time ultrasound image data on the IoT server and have analyzed the system performance, which has been impressive. This method will enrich the telemedicine facilities both for patients and physicians by assisting with overall monitoring of data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9819388PMC
http://dx.doi.org/10.3390/healthcare11010139DOI Listing

Publication Analysis

Top Keywords

image data
16
data iot
12
data
10
patient data
8
ftp server
8
iot server
8
iot
6
image
5
iot-based medical
4
medical image
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!