Early Diagnosis of COVID-19 Images Using Optimal CNN Hyperparameters.

Diagnostics (Basel)

Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA.

Published: December 2022

Coronavirus disease (COVID-19) is a worldwide epidemic that poses substantial health hazards. However, COVID-19 diagnostic test sensitivity is still restricted due to abnormalities in specimen processing. Meanwhile, optimizing the highly defined number of convolutional neural network (CNN) hyperparameters (hundreds to thousands) is a useful direction to improve its overall performance and overcome its cons. Hence, this paper proposes an optimization strategy for obtaining the optimal learning rate and momentum of a CNN's hyperparameters using the grid search method to improve the network performance. Therefore, three alternative CNN architectures (GoogleNet, VGG16, and ResNet) were used to optimize hyperparameters utilizing two different COVID-19 radiography data sets (Kaggle (X-ray) and China national center for bio-information (CT)). These architectures were tested with/without optimizing the hyperparameters. The results confirm effective disease classification using the CNN structures with optimized hyperparameters. Experimental findings indicate that the new technique outperformed the previous in terms of accuracy, sensitivity, specificity, recall, F-score, false positive and negative rates, and error rate. At epoch 25, the optimized Resnet obtained high classification accuracy, reaching 98.98% for X-ray images and 98.78% for CT images.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818649PMC
http://dx.doi.org/10.3390/diagnostics13010076DOI Listing

Publication Analysis

Top Keywords

cnn hyperparameters
8
hyperparameters
6
early diagnosis
4
covid-19
4
diagnosis covid-19
4
covid-19 images
4
images optimal
4
cnn
4
optimal cnn
4
hyperparameters coronavirus
4

Similar Publications

Software-Defined Networks (SDN) provides more control and network operation over a network infrastructure as an emerging and revolutionary paradigm in networking. Operating the many network applications and preserving the network services and functions, the SDN controller is regarded as the operating system of the SDN-based network architecture. The SDN has several security problems because of its intricate design, even with all its amazing features.

View Article and Find Full Text PDF

The current work introduces the hybrid ensemble framework for the detection and segmentation of colorectal cancer. This framework will incorporate both supervised classification and unsupervised clustering methods to present more understandable and accurate diagnostic results. The method entails several steps with CNN models: ADa-22 and AD-22, transformer networks, and an SVM classifier, all inbuilt.

View Article and Find Full Text PDF

DeepGenMon: A Novel Framework for Monkeypox Classification Integrating Lightweight Attention-Based Deep Learning and a Genetic Algorithm.

Diagnostics (Basel)

January 2025

Department of Computer Science, College of Computer Science and Engineering, Taibah University, Yanbu 46421, Saudi Arabia.

: The rapid global spread of the monkeypox virus has led to serious issues for public health professionals. According to related studies, monkeypox and other types of skin conditions can spread through direct contact with infected animals, humans, or contaminated items. This disease can cause fever, headaches, muscle aches, and enlarged lymph nodes, followed by a rash that develops into lesions.

View Article and Find Full Text PDF

Pneumonia, a leading cause of mortality in children under five, is usually diagnosed through chest X-ray (CXR) images due to its efficiency and cost-effectiveness. However, the shortage of radiologists in the Least Developed Countries (LDCs) emphasizes the need for automated pneumonia diagnostic systems. This article presents a Deep Learning model, Zero-Order Optimized Convolutional Neural Network (ZooCNN), a Zero-Order Optimization (Zoo)-based CNN model for classifying CXR images into three classes, Normal Lungs (NL), Bacterial Pneumonia (BP), and Viral Pneumonia (VP); this model utilizes the Adaptive Synthetic Sampling (ADASYN) approach to ensure class balance in the Kaggle CXR Images (Pneumonia) dataset.

View Article and Find Full Text PDF

Evaluating Machine Learning and Deep Learning models for predicting Wind Turbine power output from environmental factors.

PLoS One

January 2025

Renewable Energy Science and Engineering Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt.

This study presents a comprehensive comparative analysis of Machine Learning (ML) and Deep Learning (DL) models for predicting Wind Turbine (WT) power output based on environmental variables such as temperature, humidity, wind speed, and wind direction. Along with Artificial Neural Network (ANN), Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), and Convolutional Neural Network (CNN), the following ML models were looked at: Linear Regression (LR), Support Vector Regressor (SVR), Random Forest (RF), Extra Trees (ET), Adaptive Boosting (AdaBoost), Categorical Boosting (CatBoost), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM). Using a dataset of 40,000 observations, the models were assessed based on R-squared, Mean Absolute Error (MAE), and Root Mean Square Error (RMSE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!