Primary membranous nephropathy (MN) is caused by antibodies against podocyte antigens, especially the type M receptor of phospholipase A2 (PLA2R) and thrombospondin type-1 domain containing 7 A (THSD7A). This study's aim was the determination of anti-PLA2R, anti-THSD7A serum antibodies, and anti-PLA2R renal tissue staining prevalence in a Latin population with MN, as well as evaluating their role as biomarkers for disease activity. The performance of the two anti-PLA2R serum diagnostic methods-ELISA and indirect immunofluorescence (IFI)-was evaluated for the diagnosis of MN. Fifty-nine patients, including 29 with MN, 18 with lupus membranous nephropathy (LMN) and 12 with focal and segmental glomerulosclerosis (FSGS), were evaluated for serum antibodies. Renal biopsies were also evaluated for the presence of anti-PLA2R staining. Twenty-one patients with MN were followed for 1 year. Patients with LMN and FSGS were negative for both antibodies. All 29 MN patients were negative for anti-THSD7A; 16 MN patients were positive for anti-PLA2R by ELISA and/or IFI, and 3 MN patients were positive for anti-PLA2R only by IFI. Thus, the anti-PLA2R ELISA test demonstrated 45% sensitivity and 97% specificity, while the IFI test showed, respectively, 55% and 100% in our MN patients. Among the 28 MN renal biopsies, 20 presented anti-PLA2R positive staining, corresponding to a 72% sensitivity. Positive correlations were observed between the anti-PLA2R ELISA titer and proteinuria. In conclusion, determination of anti-PLA2R antibodies in the MN Latin population showed similar rates to those reported for other populations. The anti-PLA2R serum levels correlated with MN disease activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9818893 | PMC |
http://dx.doi.org/10.3390/diagnostics13010017 | DOI Listing |
Nephrol Dial Transplant
January 2025
Manchester Institute of Nephrology and Transplantation, Manchester University NHS Foundation Trust, Manchester, UK.
Background And Hypothesis: The PLA2R antibody test is a valuable first-line diagnostic tool for primary membranous nephropathy (MN), helping to identify PLA2R-related MN and potentially eliminating the need for a kidney biopsy in some individuals. By reducing the reliance on biopsies, the test streamlines diagnosis and improves patient care. However, determining the optimal PLA2R measurement method and cut-off is critical to maximising the benefits of the test and minimising any harms.
View Article and Find Full Text PDFBackground: With the increasing prevalence of membranous nephropathy (MN), the gut microbiome (GM) is increasingly implicated in its cause, yet the intricate mechanisms remain unclear. Whether changes in the diversity and richness of gut microbial populations among MN patients contribute to disease prevalence is still unanswered, necessitating further exploration into the potential causative link between the GM and MN.
Methods: We conducted a comprehensive bidirectional Mendelian randomization (MR) study.
Am J Physiol Renal Physiol
January 2025
Department of Medicine, Boston Medical Center and Department of Medicine, Boston University. Chobanian & Avedisian School of Medicine.
Transcriptomic analysis of microdissected human glomeruli has suggested novel molecular signatures associated with MN by revealing several genes differentially upregulated in MN compared to other glomerular diseases. We focused on a novel protein, Family with sequence similarity 114 member A1 (FAM114A1) that was identified as the top classifier gene in the dataset. To determine the localization of FAM114A1 within glomeruli, we performed immunofluorescence (IF) staining on normal human kidney specimens.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Shanxi Genetic Engineering Center for Experimental Animal Models, The Fifth Hospital (Shanxi Provincial People's Hospital) of Shanxi Medical University, Taiyuan, Shanxi, China.
Phospholipase A2 receptor 1 (PLA2R1) exists in many animals and plays an important role in membranous nephropathy. In this study, we aimed to evaluate a PLA2R1 knock-in rat model with repaired kidney function to study the molecular mechanisms of membranous nephropathy. We constructed the PLA2R1 knockout [PLA2R1(-)] model and PLA2R1 knock in [PLA2R1(+)] model in rats.
View Article and Find Full Text PDFComb Chem High Throughput Screen
January 2025
Department of Nephrology, the First Affiliated Hospital of Hebei University of Traditional Chinese Medicine, Shijiazhuang 050011,China.
Background: Shengyang Yiwei Decoction showed efficacy in idiopathic membranous nephropathy treatment, and this study aimed to assess the underlying molecular mechanisms.
Methods: Rats with passive Heymann nephritis were divided into the model group, the Shengyang Yiwei Decoction group, the JAK2 inhibitor group, and the STAT3 inhibitor group. Healthy rats served as the normal control.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!