A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Developing a Novel Methodology by Integrating Deep Learning and HMM for Segmentation of Retinal Blood Vessels in Fundus Images. | LitMetric

Accurate segregation of retinal blood vessels network plays a crucial role in clinical assessments, treatments, and rehabilitation process. Owing to the presence of acquisition and instrumentation anomalies, precise tracking of vessels network is challenging. For this, a new fundus image segmentation framework is proposed by combining deep neural networks, and hidden Markov model. It has three main modules: the Atrous spatial pyramid pooling-based encoder, the decoder, and hidden Markov model vessel tracker. The encoder utilized modified ResNet18 deep neural networks model for low-and-high-levels features extraction. These features are concatenated in module-II by the decoder to perform convolution operations to obtain the initial segmentation. Previous modules detected the main vessel structure and overlooked some small capillaries. For improved segmentation, hidden Markov model vessel tracker is integrated with module-I and-II to detect overlooked small capillaries of the vessels network. In last module, final segmentation is obtained by combining multi-oriented sub-images using logical OR operation. This novel framework is validated experimentally using two standard DRIVE and STARE datasets. The developed model offers high average values of accuracy, area under the curve, and sensitivity of 99.8, 99.0, and 98.2%, respectively. Analysis of the results revealed that the developed approach offered enhanced performance in terms of sensitivity 18%, accuracy 3%, and specificity 1% over the state-of-the-art approaches. Owing to better learning and generalization capability, the developed approach tracked blood vessels network efficiently and automatically compared to other approaches. The proposed approach can be helpful for human eye assessment, disease diagnosis, and rehabilitation process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12539-022-00545-9DOI Listing

Publication Analysis

Top Keywords

vessels network
16
blood vessels
12
hidden markov
12
markov model
12
retinal blood
8
rehabilitation process
8
deep neural
8
neural networks
8
model vessel
8
vessel tracker
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!