A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The protein escape process at the ribosomal exit tunnel has conserved mechanisms across the domains of life. | LitMetric

The protein escape process at the ribosomal exit tunnel has conserved mechanisms across the domains of life.

J Chem Phys

Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11307, Vietnam.

Published: January 2023

The ribosomal exit tunnel is the primary structure affecting the release of nascent proteins at the ribosome. The ribosomal exit tunnels from different species have elements of conservation and differentiation in structural and physico-chemical properties. In this study, by simulating the elongation and escape processes of nascent proteins at the ribosomal exit tunnels of four different organisms, we show that the escape process has conserved mechanisms across the domains of life. Specifically, it is found that the escape process of proteins follows the diffusion mechanism given by a simple diffusion model, and the median escape time positively correlates with the number of hydrophobic residues and the net charge of a protein for all the exit tunnels considered. These properties hold for 12 distinct proteins considered in two slightly different and improved Gō-like models. It is also found that the differences in physico-chemical properties of the tunnels lead to quantitative differences in the protein escape times. In particular, the relatively strong hydrophobicity of E. coli's tunnel and the unusually high number of negatively charged amino acids on the tunnel's surface of H. marismortui lead to substantially slower escapes of proteins at these tunnels than at those of S. cerevisiae and H. sapiens.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0129532DOI Listing

Publication Analysis

Top Keywords

ribosomal exit
16
escape process
12
exit tunnels
12
protein escape
8
exit tunnel
8
conserved mechanisms
8
mechanisms domains
8
domains life
8
nascent proteins
8
physico-chemical properties
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!