Wood biomass conversion for fossil resource replacement could result in the sustainable production of chemicals, although lignin represents an obstacle to efficient polysaccharide use. White-rot fungus Phlebia sp. MG-60 reportedly selectively and aerobically degrades lignin in hardwood, then it begins cellulose saccharification from the delignified wood to produce ethanol. Environmental conditions might change white-rot fungi-driven biomass conversion. However, how the environmental response sensor affects ethanol fermentation in white-rot fungi remains elusive. In this study, we focused on MGHOG1, the yeast Hog1 homolog in Phlebia sp. MG-60, a presumably important player in osmoresponse. We generated MGHOG1 overexpressing (OE) transformants in Phlebia sp. MG-60, exhibiting slower mycelial growth compared with the wild-type under salinity stress. MGHOG1 overexpressing liquid cultures displayed suppressed mycelial growth and ethanol fermentation. Therefore, MGHOG1 potentially influences ethanol fermentation and mycelial growth in Phlebia sp. MG-60. This study provides novel insights into the regulation of white-rot fungi-mediated biomass conversion.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bbb/zbac203DOI Listing

Publication Analysis

Top Keywords

phlebia mg-60
20
ethanol fermentation
16
mycelial growth
16
biomass conversion
12
white-rot fungus
8
fungus phlebia
8
fermentation mycelial
8
mghog1 overexpressing
8
white-rot
5
phlebia
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!