A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

SIMBSIG: similarity search and clustering for biobank-scale data. | LitMetric

SIMBSIG: similarity search and clustering for biobank-scale data.

Bioinformatics

Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.

Published: January 2023

AI Article Synopsis

  • SIMBSIG is a new Python package designed for handling extremely large datasets typically encountered in bioinformatics, using GPU acceleration to perform similarity searches, principal component analysis, and clustering efficiently.* -
  • The package features a user-friendly interface similar to scikit-learn, making it accessible for users familiar with machine learning in Python.* -
  • SIMBSIG is open-source and can be downloaded from PyPI, with its source code and documentation available on GitHub, licensed under BSD-3.*

Article Abstract

Summary: In many modern bioinformatics applications, such as statistical genetics, or single-cell analysis, one frequently encounters datasets which are orders of magnitude too large for conventional in-memory analysis. To tackle this challenge, we introduce SIMBSIG (SIMmilarity Batched Search Integrated GPU), a highly scalable Python package which provides a scikit-learn-like interface for out-of-core, GPU-enabled similarity searches, principal component analysis and clustering. Due to the PyTorch backend, it is highly modular and particularly tailored to many data types with a particular focus on biobank data analysis.

Availability And Implementation: SIMBSIG is freely available from PyPI and its source code and documentation can be found on GitHub (https://github.com/BorgwardtLab/simbsig) under a BSD-3 license.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825260PMC
http://dx.doi.org/10.1093/bioinformatics/btac829DOI Listing

Publication Analysis

Top Keywords

simbsig similarity
4
similarity search
4
search clustering
4
clustering biobank-scale
4
biobank-scale data
4
data summary
4
summary modern
4
modern bioinformatics
4
bioinformatics applications
4
applications statistical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: