Background: Probiotics are suggested to improve depressive symptoms via the microbiota-gut-brain axis. We have recently shown a beneficial clinical effect of probiotic supplementation in patients with depression. Their underlying neural mechanisms remain unknown.

Methods: A multimodal neuroimaging approach including diffusion tensor imaging, resting-state functional MRI, and arterial spin labeling was used to investigate the effects of a four-weeks probiotic supplementation on fronto-limbic brain structure, function, and perfusion and whether these effects were related to symptom changes.

Results: Thirty-two patients completed both imaging assessments (18 placebo and 14 probiotics group). Probiotics maintained mean diffusivity in the left uncinate fasciculus, stabilized it in the right uncinate fasciculus, and altered resting-state functional connectivity (rsFC) between limbic structures and the temporal pole to a cluster in the precuneus. Moreover, a cluster in the left superior parietal lobule showed altered rsFC to the subcallosal cortex, the left orbitofrontal cortex, and limbic structures after probiotics. In the probiotics group, structural and functional changes were partly related to decreases in depressive symptoms.

Limitations: This study has a rather small sample size. An additional follow-up MRI session would be interesting for seeing clearer changes in the relevant brain regions as clinical effects were strongest in the follow-up.

Conclusion: Probiotic supplementation is suggested to prevent neuronal degeneration along the uncinate fasciculus and alter fronto-limbic rsFC, effects that are partly related to the improvement of depressive symptoms. Elucidating the neural mechanisms underlying probiotics' clinical effects on depression provide potential targets for the development of more precise probiotic treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jad.2022.12.142DOI Listing

Publication Analysis

Top Keywords

probiotic supplementation
12
uncinate fasciculus
12
fronto-limbic brain
8
brain structure
8
structure function
8
function perfusion
8
depressive symptoms
8
neural mechanisms
8
resting-state functional
8
probiotics group
8

Similar Publications

Background: Obesity and high fasting blood glucose (FBG) resulting from high-fat diets (HFDs) have emerged as significant public health concerns, garnering increasing attention. Recently, gut microbiota has been linked with metabolic diseases such as type 2 diabetes (T2DM), and its mediating role in dietary supplements has been confirmed. Seeking various dietary supplements to lose body weight (BW) and decrease FBG and explaining the underlying mechanism have become the research hotspots in T2DM studies.

View Article and Find Full Text PDF

Background: The human gut microbiome strongly influences host metabolism by fermenting dietary components into metabolites that signal to the host. Our previous work has shown that Intestinimonas butyriciproducens is a prevalent commensal bacterium with the unique ability to convert dietary fructoselysine to butyrate, a well-known signaling molecule with proven health benefits. Dietary fructoselysine is an abundant Amadori product formed in foods during thermal treatment and is part of foods rich in dietary advanced glycation end products which have been associated with cardiometabolic disease.

View Article and Find Full Text PDF

This study aimed to investigate the impact of dietary soybean oil and probiotics on goat meat quality, total conjugated linoleic acids (TCLA) concentration, and nutritional quality indicators of goats. Thirty-six male crossbred goats (Anglo-Nubian♂× Thai native♀), weighing 18.3 ± 2.

View Article and Find Full Text PDF

Gut-brain axis as a bridge in obesity and depression: Mechanistic exploration and therapeutic prospects.

World J Psychiatry

January 2025

The Second Clinical Medical College, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China.

A recent study by Wang , published in the , provided preventative and therapeutic strategies for the comorbidity of obesity and depression. The gutbrain axis, which acts as a two-way communication system between the gastrointestinal tract and the central nervous system, plays a pivotal role in the pathogenesis of these conditions. Evidence suggests that metabolic byproducts, such as short-chain fatty acids, lipopolysaccharide and bile acids, which are generated by the gut microbiota, along with neurotransmitters and inflammatory mediators within the gut-brain axis, modulate the host's metabolic processes, neuronal regulation, and immune responses through diverse mechanisms.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) remains incurable, yet its long prodromal phase offers a crucial window for early intervention. Pretangle tau, a precursor to neurofibrillary tangles, plays a key role in early AD pathogenesis. Intervening in pretangle tau pathology could significantly delay the progression of AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!